Lecture 12, Oct 3, 2022

Summary of Cases of Eigenvalues

e Consider A = {a b
c d

— The characteristic equation is A> — (a + d)A 4+ ad —bc =0 = \? —tr(A)\ + det(A) =0
tr(A) £ /(tr(A))2 — 4det(A)

— Therefore A =

2
e Let p=trA,q=detA, then the sign of p> — 4¢ determines the behaviour of the ODE:
— On the parabola, p? = 4q, we get two real, equal eigenvalues
— Below the parabola 4q < p?, we get two real, distinct eigenvalues
— Above the parabola 4q > p?, we get two complex eigenvalues that are complements
e Recall det A = A\ Ao, so if det A < 0 the eigenvalues have different signs; if det A > 0 they have the
same sign
— Below the p axis the determinant is negative so the eigenvalues have different signs, so we get
saddle points (semistable equilibria)
— Above it we get either stable or unstable equilibrium since eigenvalues have the same sign
* Between the p axis and parabola, on the right, the trace is positive, so both eigenvalues must
be positive, leading to an unstable equilibrium
* On the left the trace is negative, so both eigenvalues must be negative, leading to a stable
equilibrium
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Figure 1: Summary of possible cases of the determinant and trace

Repeated Eigenvalues (and Eigenvectors)

0 -1
— In this case we have repeated eigenvalues, but two distinct eigenvectors

o On the parabola we have repeated eigenvalues, e.g. ' = -1 0 ] x

! —— 1
o Another example: ' = [m,] = 2 1 [m}
w 0 ot w
1
0
— Such matrices are defective; if we follow our usual procedure we only get one solution, which does

1
— In this case we have A\ = Ay = —5 but only one eigenvector



not span the full solution space

« Notice in this system w’ does not depend on m, so we can solve it independently to get w = cze_%

1
— Substituting this back in we get m’ = —5m + 026_% which is a FO linear ODE

— Using integrating factors we get m = czte_% + cle_%

— The final solution is x = cle*% [(1)] + co <te% Ll)] + e 3 [(ﬂ)
* But wait, where did w = (1) come from? What does it mean?
e Our solution has the form xy = te 5v +te Tw

t ]. t ]. t t t
— Substituting this in: e”2v — Ete’iv — ge’iw =A (teiiv + teff'w)
1 1
— Notice for this to hold we must have ——te 2w = Ate % and e 2v — —¢ 3w = Ae Zw
1 1
— This gives us (A—l— §I> v =0 and (A—i— 5[) w=v

1
* A+ 51 > w = v is a generalized eigenvector equation, where w is the generalized eigenvector

* Solving this gives us w = [ﬂ , so we can choose k = 0 and form our solution

The generalized eigenvector is a vector that satisfies (A —AI)w = v, where v is the repeated eigenvector
and A is the repeated eigenvalue




When eigenvalues and eigenvectors are equal:
1. Write the first solution @, (t) = e*wv where (A — AI)v =0
2. Write the second solution x5 (t) = teMv + eMw where (A — AX)w = v
3. The general solution is then @ = @1 (¢t) + caxa(t)

This works even when A is not triangular
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