
Lecture 10, Sep 29, 2022
Eigenvalues of Linear ODE Systems
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– General solution: x⃗(t) = c1e− 7
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– Solution to IVP: x(0) =
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=⇒ c1 = −4, c2 = 8

– Unstable equilibrium (sink) at (0, 0); all solutions approach this as t → ∞
• To visualize these in 2D, first plot the eigenvectors; use the sign of the eigenvalues to determine the

directions of solutions along the eigenvectors
• For a given solution, it moves in the direction of the “dominant” eigenvector faster (the dominant

eigenvector is the one with the greatest magnitude in eigenvalue)

• With two negative eigenvalues, all solutions tend towards the equilibrium at
[
0
0

]
as t → ∞

– The equilibrium at
[
0
0

]
is a sink and stable equilibrium

• With two positive eigenvalues, all solutions (except for the one starting at the origin) diverge towards
infinity

– The equilibrium at
[
0
0

]
is a source and unstable equilibrium

• With one positive and one negative eigenvalue, one of the eigenvectors is divergent and one is convergent

– The equilibrium at
[
0
0

]
is a semistable equilibrium

• With one negative and one zero eigenvalue, solutions converge towards the zero eigenvalue, which is an
entire line of equilibrium points
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