Lecture 10, Sep 29, 2022

Eigenvalues of Linear ODE Systems

13 3
dz - 7 —16
. s = 8 4 7 PN —
Example: T 1 1 Z, To 20 }
4 4
. . 7 . 6 1 1
— FKigenvalues and eigenvectors: A\ = T =1 JAg = ——, Uy = 3
. - _72 |6 _1 |1
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— Solution to IVP: z(0) = { 90 | =€ _J + o [2} = ¢y =—4,c0 =238

— Unstable equilibrium (sink) at (0,0); all solutions approach this as t — oo
o To visualize these in 2D, first plot the eigenvectors; use the sign of the eigenvalues to determine the
directions of solutions along the eigenvectors
o For a given solution, it moves in the direction of the “dominant” eigenvector faster (the dominant
eigenvector is the one with the greatest magnitude in eigenvalue)

o With two negative eigenvalues, all solutions tend towards the equilibrium at [8] as t — oo

— The equilibrium at is a sink and stable equilibrium
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« With two positive eigenvalues, all solutions (except for the one starting at the origin) diverge towards
infinity

— The equilibrium at is a source and unstable equilibrium

o With one positive and one negative eigenvalue, one of the eigenvectors is divergent and one is convergent
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— The equilibrium at is a semistable equilibrium
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o With one negative and one zero eigenvalue, solutions converge towards the zero eigenvalue, which is an
entire line of equilibrium points
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