Lecture 1, Sep 8, 2022

- Modelling temperature of a boba cup on a hot day: u(t) where T_0 is the surrounding temperature - u is the dependent variable, t is the independent variable
- What is the problem with the following models?

$$- u' = u^2$$

* Temperature increases forever

$$-u' = u'' + 2u$$

 $\ast\,$ No dependence on the surrounding temperature

$$-u' = u - T_0$$

* u does not approach T_0

$$-u' = T_0 - u$$

* The environment is not taken into account (e.g. if the type of liquid changed, the equation can't account for it)

• Newton's Law of Cooling: The rate of change of temperature is negatively proportional to the difference between the temperature difference between the object and its surroundings

$$-u' = -k(u - T_0)$$

* k is the transmission coefficient

Note

Newton was an avid boba drinker [citation needed]

• Solution:

$$- \frac{\mathrm{d}u}{\mathrm{d}t} = -k(u - T_0)$$

$$\implies \frac{\mathrm{d}u}{\mathrm{d}t} = -k$$

$$\implies \frac{\mathrm{d}}{\mathrm{d}t}\ln|u - T_0| = -k$$

$$\implies \ln|u - T_0| = -kt + C$$

$$\implies u - T_0 = Ae^{-kt}$$

$$\implies u = Ae^{-kt} + T_0$$

- This gives us a family of curves, all with different initial conditions (*integral curves*)
- In general we know u(0) or $u(t_0)$ for some t_0 so we can solve for A