
Lecture 1, Sep 8, 2022
• Modelling temperature of a boba cup on a hot day: u(t) where T0 is the surrounding temperature

– u is the dependent variable, t is the independent variable
• What is the problem with the following models?

– u′ = u2

* Temperature increases forever
– u′ = u′′ + 2u

* No dependence on the surrounding temperature
– u′ = u − T0

* u does not approach T0
– u′ = T0 − u

* The environment is not taken into account (e.g. if the type of liquid changed, the equation
can’t account for it)

• Newton’s Law of Cooling: The rate of change of temperature is negatively proportional to the difference
between the temperature difference between the object and its surroundings

– u′ = −k(u − T0)
* k is the transmission coefficient

Note

Newton was an avid boba drinker[citation needed]

• Solution:
– du

dt
= −k(u − T0)

=⇒
du
dt

u − T0
= −k

=⇒ d
dt

ln|u − T0| = −k

=⇒ ln|u − T0| = −kt + C

=⇒ u − T0 = Ae−kt

=⇒ u = Ae−kt + T0
– This gives us a family of curves, all with different initial conditions (integral curves)
– In general we know u(0) or u(t0) for some t0 so we can solve for A

Lecture 2, Sep 9, 2022
Classification of Differential Equations

• Ordinary vs Partial Differential Equations
– PDEs have partial derivatives, resulting from the presence of multiple independent variables

• Order
– The highest derivative that appears in the equation

• Linear vs Nonlinear
– The most general nth order ODE can be expressed as F (t, y, y′, · · · , y(n)) = 0
– A linear ODE can be written as a0(t)y(n) + a1(t)y(n−1) + · · · + an(t)y = g(t)

* an can depend on t and t alone
– The linear DE is homogeneous if g(t) = 0

• Autonomous vs Nonautonomous
– An autonomous ODE does not explicitly depend on t, e.g. y′ = y is autonomous, y′ = ty is not

• Separable vs Nonseparable
– A first order ODE dy

dt
= f(t, y) is separable if we can decompose f(t, y) = p(t)q(y)
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• Example: du

dt
= −k(u − T0) is a first order, linear, nonhomogeneous, autonomous, separable ODE

Lotka-Volterra (Predator-Prey)
• Modelling the number of zombies in an apocalypse, where x is the number of people and y is the number

of zombies, assumptions:
1. Zombies eat people

– x′ = −βxy
– The rate at which people get eaten is proportional to the number of zombies and people

2. People reproduce
– x′ = αx

3. Zombies suffer natural death and emigration
– y′ = δxy − γy
– Zombies flourish when they’re being fed; the more there are, the more are dying of natural

causes

• This is summarized in the system:


dx

dt
= αx − βxy

dy

dt
= −γy + δxy

Figure 1: Cycle of predator-prey population

Lecture 3, Sep 12, 2022
Direction Fields

• Consider the DE du

dt
= f(t, u)

– We can interpret this as the slope at each point is equal to some function of t and u
• We can draw a direction field, at each point (t, u) draw the slope f(t, u)

• Using a direction field, for any starting point we can follow it to trace out a solution to our ODE

• Direction fields allow us to visualize solutions to DEs without having to actually solve it

Equilibria
• Notice for this DE, all solutions tend towards the equilibrium u = 60

– If we start from the equilibrium, we never move away from it, which lends to the definition:
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Figure 2: Direction field for u′ = −1.5(u − 60)

Figure 3: Direction field for u′ = −1.5(u − 60) with overlaid integral curves
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Definition

Given a first order autonomous DE dy

dt
= f(y), equilibrium solutions are those satisfying f(y) = dy

dt
= 0

Equilibrium points are also known as critical points, fixed points, stationary points, etc

Definition

3 types of equilibria:
• Stable equilibrium: other solutions tend towards the equilibrium solution
• Unstable equilibrium: other solutions diverge from the equilibrium solution
• Semi-stable equilibrium: other solution tend towards the equilibrium on one side and diverge

from it on the other

• For this DE, we have a stable equilibrium since all solutions approach the equilibrium solution u = 60
• dp

dt
= rp − a has an unstable equilibrium of p = a

r
, since all other solutions diverge from this point

Figure 4: Types of eqilibrium

• Example: Find and classify equilibria of y′ = cos y:
– y′ = 0 =⇒ cos y = 0 =⇒ y = π

2 + kπ, k ∈ Z

– The equilibrium at π

2 is stable, then 3π

2 is unstable, 5π

2 is stable, and so on

• On the plot, points where y′ crosses from positive to negative are stable; points where y′ crosses from
negative to positive are unstable

Lecture 4, Sep 15, 2022
Method of Integrating Factors

• Consider a first order linear ODE: du

dt
+ p(t)u = g(t):
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Figure 5: Plot of y′ = cos y

– Assume we have a function µ(t) such that µ(t)p(t) = dµ

dt

– Multiply by µ: µ(t)du

dt
+ µ(t)p(t)u = µ(t)du

dt
+ dµ

dt
u = µ(t)g(t)

– d
dt

(µu) = µ(t)g(t) =⇒ u =
�

µ(t)g(t) dt

µ(t)
– Choose µ: dµ

dt
= µ(t)p(t) =⇒ 1

µ

dµ

dt
= µ(t)p(t) =⇒ µ(t) = e

�
p(t) dt

Important

Method of integrating factors: The solution to du

dt
+ p(t)u = g(t) is u(t) = 1

µ

(�
µ(t)g(t) dt + C

)
,

where the integrating factor µ(t) = exp
(�

p(t) dt

)

Example

• Example: u′ = −k(u − T0 − A sin(ωt))
– The A sin(ωT ) term represents seasonal temperature variations
– Put in standard form: u′ + ku = kT0 + kA sin(ωt)

– Calculate integrating factor: µ = exp
(�

k dt

)
= ekt

– General solution: u(t) = 1
ekt

(�
eks(kT0 + kA sin(ωs)) ds + C

)
= T0 + 1

ekt

(�
ekskA sin(ωs) ds

)
+ C

1
ekt

= · · ·

= T0 + kA

k2 + ω2 (k sin(ωt) − ω cos(ωt)) + C
1

ekt

• Notice all solutions converge to a single solution u(t) = T0 + kA

k2 + ω2 (k sin(ωt) − ω cos(ωt))
– The dominant term is completely independent of initial condition C

• However, this is not an equilibrium because du

dt
̸= 0
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Figure 6: Solution curves

Lecture 5, Sep 16, 2022
Rocket Science

• Consider Earth with radius R, rocket with mass m at height x with velocity v, and gravitational
acceleration g

• Given ma = F, v(0) = v0 as the initial rocket velocity

– The force of gravity is mgR2

(R + x)2 , since for x = 0 =⇒ mgR2

R2 = mg is the gravitational force on

the Earth’s surface
– This gives ma = F = − mgR2

(R + x)2 (since gravity works in the negative direction)

• The equation of motion is dv

dt
= gR2

(R + x)2

– Applying the chain rule: dv

dt
= dv

dx

dx

dt
= dv

dx
v

– Using this we can eliminate t

– Note by doing this we get a first order ODE, whereas making a = d2x

dt2 gives us a second order
ODE

• v
dv

dx
= − gR2

(R + x)2 , v(0) = v0

– Note here v(0) = v0 means the velocity at position 0 instead of time 0

• Solution: v
dv

dx
= − gR2

(R + x)2

=⇒ 1
2v2 = gR2

R + x
+ C

=⇒ v(x) = ±
√

2gR2

R + x
+ C

– v(0) = v0 =⇒
√

2gR + C = v0 =⇒ C = v2
0 − 2gR

– Final solution: v = ±
√

2gR2

R + x
+ v2

0 − 2gR

• What is the maximum altitude xmax reached?

– v(xmax) = 0 =⇒ 2gR2

R + x
+ v2

0 = 2gR =⇒ xmax = v2
0R

2gR − v2
0

• Given xmax, what v0 do we need?

– v0 =
√

2gR
xmax

R + xmax
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• The escape velocity is then lim
xmax→∞

v0 =
√

2gR

Lecture 6, Sep 19, 2022
Existence and Uniqueness of Solutions

• Given an ODE, does a solution exist, and is the solution unique?

Theorem

Given y′ + p(t)y = g(t), y(t0) = y0, and p, g continuous over t0 ∈ (α, β), then there exists a unique
solution in the interval (α, β)

Theorem

Given y′ = f(t, y), y(t0) = y0, and f,
∂f

∂y
continuous over (t0, y0) ∈ (α, β) × (γ, δ), then there exists a

unique solution in some interval (t0 − h, t0 + h) ∈ (α, β)

The existence (but not uniqueness) of a solution can be established on the continunity of f alone

Figure 7: Visualization of the first-order nonlinear existence and uniqueness theorem

• The first-order nonlinear existence and uniqueness theorem only guarantees the existence and uniqueness
of a solution in some interval within h, which we don’t know

– The linear version guarantees the entire continuous interval, whereas the nonlinear version only
guarantees some smaller interval within the continuous interval

• Examples:
– y′ + 2

t
y = 4t, y(1) = 2

* Use the linear theorem
* p, g continuous except where t = 0
* The initial condition lies within the continuous region, so a unique solution exists for t ∈ (0, ∞)

– dy

dt
= 3t2 + 4t + 2

2(y − 1) , y(0) = −1

* Use the nonlinear theorem
* f is continuous except where y = 1
* fy is continuous except where y = 1
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* The initial condition lies in the region of continuity, so a unique solution exists for some region
t ∈ (−h, h)

– dy

dt
= 3t2 + 4t + 2

2(y − 1) , y(0) = 1

* Since f is not continuous at the initial condition, the theorem does not apply
* Even though it’s not guaranteed that a solution will exist, a solution may still exist
* Solving the DE does yield a solution, but the solution is not unique

Important

Implication: The graphs of two solutions cannot intersect each other where the theorems hold (because
this would violate the uniqueness of solutions)

“Just because you can’t see a solution to an ODE doesn’t mean you can’t prove it exists.” – Vardan, MAT292
(2022)

Lecture 7, Sep 22, 2022
Logistic Growth

• Simple growth model of dy

dt
= rt is unrealistic, as at some point the population needs to stop growing

due to lack of resources
• Growth rate depending on population: dy

dt
= h(y)y

– Growth rate h(y) = r − ay
– If y is small, then h(y) > 0 and the population grows
– If y is large, then h(y) < 0 and the population dies off due to lack of resources

• This leads to the logistic equation (Verhulst equation): dy

dt
= (r − ay)y

– Equivalently dy

dt
= r

(
1 − y

K

)
y, K = r

a
– This is a first-order autonomous nonlinear ODE

• r is the intrinsic carrying capacity
• K is the saturation level, or environmental carrying capacity

Important

Logistic growth model:
dy

dt
= r

(
1 − y

K

)
y

where K = r

a
; solved by

y = y0K

y0 + (K − y0)e−rt

assuming y0 < K

• The line y = K is a stable equilibrium
• K

2 is an inflection point, where the population curve goes from concave up to concave down
– Rate of population growth begins to slow down

• The solution is y = y0K

y0 + (K − y0)e−rt
, assuming y0 < K
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Figure 8: Solutions to the logistic model

Growth With a Threshold
• If the initial population is too low, they might all die out before the population can grow
• dy

dt
= −r

(
1 − y

T

)
y

Figure 9: Solutions to the growth with a threshold model

• If y0 > T then the population keeps growing; if y0 < T then the population shrinks until everyone dies
out

– y0 = T is an unstable equilibrium
• Solution: y = y0T

y0 + (T − y0)ert
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Logistic Growth With a Threshold

• Combine the two models: dy

dt
= −r

(
1 − y

T

) (
1 − y

K

)
y

Figure 10: Solutions to the logistic growth with a threshold model

Lecture 8, Sep 23, 2022
Systems of Two First Order Linear ODEs

• Every week:
– McDonald’s gains 2 followers for every follower they have
– Wendy’s gains 3 followers for every follower they have
– McDonald’s loses 2 followers for every follower of Wendy’s
– Wendy’s loses a follower for every follower of McDonald’s
– Both gain 300 followers

•
{

m′ = 2m − 2w + 300
w′ = 3w − m + 300

• As a matrix:
[
m′

w′

]
=

[
2 −2

−1 3

] [
m
w

]
+

[
300
300

]
• Notice the diagonal lines of vectors; they correspond to eigenvectors; the directions of arrows on the

lines correspond to eigenvalues

First Order Linear ODEs of Dimension Two

• More generally, we have

dx

dtdy

dt

 =
[
p11(t)x + p12(t)y + g1(t)
p21(t)x + p22(t)y + g2(t)

]

– This can be written as dz⃗

dt
= K(t)z⃗ + g⃗(t)

– z⃗ =
[
x
y

]
is the state vector, where x, y are state variables

– K(t) =
[
p11 p12
p21 p22

]
, g⃗(t) =

[
g1(t)
g2(t)

]
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Figure 11: Direction field and trajectories/orbits in state space/phase plane

Figure 12: Direction field and trajectories for
[
m′

w′

]
=

[
1 −2

−1 0

] [
m
w

]
+

[
300
300

]
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• If g⃗(t) = 0, this system is homogeneous

Theorem

Existence and Uniqueness: Givendx

dtdy

dt

 =
[
p11(t)x + p12(t)y + g1(t)
p21(t)x + p22(t)y + g2(t)

]

and [
x(t0)
y(t0)

]
=

[
x0
y0

]
if p11, · · · , p22, g1, · · · , g2 are continous on an open interval t0 ∈ (α, β), then there exists a unique
solution in the interval (α, β).

Definition

A first order linear ODE
dx⃗

dt
= K(t)x⃗ + g⃗(t)

is autonomous if coefficients do not depend on t, i.e.

dx⃗

dt
= Ax⃗ + b⃗

As a consequence, if a first order linear ODE is autonomous, a unique solution exists and is valid for
all t.

Equilibrium Points

• The equilibrium points are where dx⃗

dt
= 0; to find these we need to solve the system

Definition

For a first order linear autonomous ODE

dx⃗

dt
= Ax⃗ + b⃗

the constant solution x⃗ = −A−1⃗b is an equilibrium solution/critical point, assuming A−1 exists

• If A is not invertible, there may be either no equilibrium points or an infinite number of equilibrium
points, e.g. an entire line of equilibrium points where vectors on both sides point towards the line

Lecture 9, Sep 26, 2022
Nonhomogeneous to Homogeneous

• Homogeneous ODEs always have an equilibrium at the origin, whereas nonhomogeneous ODEs’ equilib-
rium points aren’t at the origin

• The equilibrium point for dx⃗

dt
= Ax⃗ + b is x⃗eq = −A−1b
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• With a change of coordinates ⃗̃x = x⃗− x⃗eq, we get d⃗̃x + x⃗eq

dt
= A(⃗̃x+ x⃗eq) =⇒ d⃗̃x

dt
= A˜⃗x, a homogeneous

system of ODEs

Superposition
• We like homogeneous ODEs because we can superimpose them

Important

Principle of Superposition: Given x⃗1(t), x⃗2(t) are solutions to x⃗′(t) = Ax⃗(t), then c1x⃗1(t) + c2x⃗2(t) is
also a solution for any c1, c2

• Proof: d
dt

(c1x⃗1(t) + c2x⃗2(t)) = c1x′
1(t) + c2x′

2(t) = c1Ax1(t) + c2Ax2(t) = A(c1x⃗1(t) + c2x⃗2(t))

Linear Independence of Solutions

Definition

Two solutions x⃗1(t), x⃗2(t) are linearly dependent if ∃k s.t. x⃗1(t) = kx⃗2(t)

• Given two independent solutions, we can take linear combinations of them to span the full solution
space and find a solution for any initial condition

• However, if the solutions are not independent, we can’t do that

Definition

The Wronskian W [x⃗1, x⃗2](t) =
∣∣x⃗1(t) x⃗2(t)

∣∣
If W [x⃗1, x⃗2](t) = 0, then x1, x2 are linearly dependent

General Solutions Through Eigendecomposition

• Given dx⃗

dt
= Ax⃗, guess x⃗(t) = eλtv⃗

– This guess corresponds to the straight line solutions; their directions don’t change, and their
magnitudes change exponentially

• Substituting in, we get λv⃗ = Av⃗: if λ and v⃗ are an eigenvalue and eigenvector of A, then x⃗ = eλtv⃗
solves the ODE

• Assuming λ1 ̸= λ2 we have two independent solutions x⃗1(t) = eλ1tv⃗1, x⃗2(t) = eλ2tv⃗2 corresponding to
the two eigenvalues and eigenvectors

– We know the Wronskian is nonzero because eigenvectors for different eigenvalues are independent
• From them we can generate the general solution c1x⃗1(t) + c2x⃗2(t), which spans the 2D space of all

initial conditions

Lecture 10, Sep 29, 2022
Eigenvalues of Linear ODE Systems

• Example: dx⃗

dt
=

−13
8

3
41

4 −1
4

 x⃗, x⃗0 =
[
−16
20

]
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– Eigenvalues and eigenvectors: λ1 = −7
4 , v⃗1 =

[
6

−1

]
, λ2 = −1

8 , v⃗2 = 1
2

– General solution: x⃗(t) = c1e− 7
4

[
6

−1

]
+ c2e− 1

8

[
1
2

]
– Solution to IVP: x(0) =

[
−16
20

]
= c1

[
6

−1

]
+ c2

[
1
2

]
=⇒ c1 = −4, c2 = 8

– Unstable equilibrium (sink) at (0, 0); all solutions approach this as t → ∞
• To visualize these in 2D, first plot the eigenvectors; use the sign of the eigenvalues to determine the

directions of solutions along the eigenvectors
• For a given solution, it moves in the direction of the “dominant” eigenvector faster (the dominant

eigenvector is the one with the greatest magnitude in eigenvalue)

• With two negative eigenvalues, all solutions tend towards the equilibrium at
[
0
0

]
as t → ∞

– The equilibrium at
[
0
0

]
is a sink and stable equilibrium

• With two positive eigenvalues, all solutions (except for the one starting at the origin) diverge towards
infinity

– The equilibrium at
[
0
0

]
is a source and unstable equilibrium

• With one positive and one negative eigenvalue, one of the eigenvectors is divergent and one is convergent

– The equilibrium at
[
0
0

]
is a semistable equilibrium

• With one negative and one zero eigenvalue, solutions converge towards the zero eigenvalue, which is an
entire line of equilibrium points

Lecture 11, Sep 30, 2022
Lotka-Volterra (Predator-Prey)

•
{

x′ = αx − βxy

y′ = −γy + δxy

• Equilibrium point exists at
[
x
y

]
=

 γ

δα

β



Figure 13: Solution curves to the system

• This system is nonlinear, so we have to linearize it
• We will linearize around the equilibrium
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• The Jacobian evaluated is J =
[
α − βy −βx

δy δx − γ

]

– At equilibrium this is

 0 −βγ

δαγ

β
0

 [
x
y

]
• The eigenvalues of this system are complex! λ = ±√

αγ
– When eigenvalues are complex, solutions have spirals

Complex Eigenvalues
• Theorem: If A is a real matrix, then its eigenvalues come in complex conjugate pairs

– Eigenvalues also come in complex conjugate pairs, e.g. if v1 =
[
1 − i5
2 + i

]
then v2 =

[
1 + i5
2 − i

]
• Suppose dx

dt
= Ax and A has complex eigenvalues

– If we follow our usual approach we would get x1(t) = e(µ+iν)tv1, x2(t) = e(µ−iν)tv̄1, but these are
not real solutions

• Let v1 = a + ib =⇒ x1(t) = eµt(cos(νt) + i sin(νt))(a + ib)
= eµt(a cos νt − b sin νt) + ieνt(a sin νt + b cos νt)
= u(t) + iw(t)

• u(t) and w(t) form the fundamental set of solutions: x = c1u(t) + c2w(t)
– To verify this, we need to verify that they’re both solutions and the Wronskian is nonzero (for now

we will take this as a given)

• Example: x′ =

1
2 −5

4
2 −1

2

 x =⇒ λ1 = 3i

2 , v⃗1 =
[

5
2 − 6i

]
, λ2 = −3i

2 , v⃗2 =
[

5
2 + 6i

]

– a =
[
5
2

]
, b =

[
0

−6

]
– ν = 3

2 , µ = 0

– u(t) =
[
5
2

]
cos

(
3
2 t

)
−

[
0

−6

]
sin

(
3
2 t

)
– As t → ∞ the solutions go in a cycle
– There is a stable equilibrium at 0
– Distinct complex eigenvalues with zero real part creates perfectly cyclical solutions

Complex Eigenvalues Cases
• Zero real part: circular solution that go nowhere as t → ∞

– Stable equilibrium at the origin
• Negative real part: solution spirals towards the origin as t → ∞

– Stable equilibrium at the origin
• Positive real part: solution spirals outwards from the origin as t → ∞

– Unstable equilibrium at the origin

Lecture 12, Oct 3, 2022
Summary of Cases of Eigenvalues

• Consider A =
[
a b
c d

]
– The characteristic equation is λ2 − (a + d)λ + ad − bc = 0 =⇒ λ2 − tr(A)λ + det(A) = 0
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– Therefore λ =
tr(A) ±

√
(tr(A))2 − 4 det(A)

2
• Let p = tr A, q = det A, then the sign of p2 − 4q determines the behaviour of the ODE:

– On the parabola, p2 = 4q, we get two real, equal eigenvalues
– Below the parabola 4q < p2, we get two real, distinct eigenvalues
– Above the parabola 4q > p2, we get two complex eigenvalues that are complements

• Recall det A = λ1λ2, so if det A < 0 the eigenvalues have different signs; if det A > 0 they have the
same sign

– Below the p axis the determinant is negative so the eigenvalues have different signs, so we get
saddle points (semistable equilibria)

– Above it we get either stable or unstable equilibrium since eigenvalues have the same sign
* Between the p axis and parabola, on the right, the trace is positive, so both eigenvalues must

be positive, leading to an unstable equilibrium
* On the left the trace is negative, so both eigenvalues must be negative, leading to a stable

equilibrium

Figure 14: Summary of possible cases of the determinant and trace

Repeated Eigenvalues (and Eigenvectors)

• On the parabola we have repeated eigenvalues, e.g. x′ =
[
−1 0
0 −1

]
x

– In this case we have repeated eigenvalues, but two distinct eigenvectors

• Another example: x′ =
[
m′

w′

]
=

−1
2 1

0 −1
2

 [
m
w

]

– In this case we have λ1 = λ2 = −1
2 , but only one eigenvector

[
1
0

]
– Such matrices are defective; if we follow our usual procedure we only get one solution, which does

not span the full solution space
• Notice in this system w′ does not depend on m, so we can solve it independently to get w = c2e− t

2

– Substituting this back in we get m′ = −1
2m + c2e− t

2 which is a FO linear ODE

– Using integrating factors we get m = c2te− t
2 + c1e− t

2

– The final solution is x = c1e− t
2

[
1
0

]
+ c2

(
te− t

2

[
1
0

]
+ e− t

2

[
0
1

])

16



* But wait, where did w =
[
0
1

]
come from? What does it mean?

• Our solution has the form x2 = te− t
2 v + te− t

2 w

– Substituting this in: e− t
2 v − 1

2 te− t
2 v − 1

2e− t
2 w = A

(
te− t

2 v + te− t
2 w

)
– Notice for this to hold we must have −1

2 te− t
2 v = Ate− t

2 and e− t
2 v − 1

2e− t
2 w = Ae− t

2 w

– This gives us
(

A + 1
2I

)
v = 0 and

(
A + 1

2I

)
w = v

*
(

A + 1
2I

)
w = v is a generalized eigenvector equation, where w is the generalized eigenvector

* Solving this gives us w =
[
k
1

]
, so we can choose k = 0 and form our solution

Figure 15: Solution to the system x′ =
[
m′

w′

]
=

−1
2 1

0 −1
2

 [
m
w

]

Definition

The generalized eigenvector is a vector that satisfies (A−λI)w = v, where v is the repeated eigenvector
and λ is the repeated eigenvalue

Summary

When eigenvalues and eigenvectors are equal:
1. Write the first solution x1(t) = eλtv where (A − λI)v = 0
2. Write the second solution x2(t) = teλtv + eλtw where (A − λI)w = v
3. The general solution is then x = c1x1(t) + c2x2(t)

This works even when A is not triangular
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Lecture 13, Oct 6, 2022
Repeated Eigenvalues Examples

• Example: x′ =
[
1 −1
1 3

]
x, λ1 = λ2 = 2, v1 =

[
1

−1

]
– Generalized eigenvector: (A − λI)w = v =⇒

[
−1 −1
1 1

]
w =

[
1

−1

]
=⇒ w =

[
k

−1 − k

]
– General solution: x = c1e2t

[
1

−1

]
+ c2

(
te2t

[
1

−1

]
+ e2t

[
k

−1 − k

])
* Notice that the term with w is ke2t

[
1

−1

]
+ e2t

[
0

−1

]
; the former can be absorbed into the c1

term
* We can also just choose k to be whatever we want

– Simplified, x = c1e2t

[
1

−1

]
+ c2

(
te2t

[
1

−1

]
+ e2t

[
0

−1

])
– As t → ∞ the solution is dominated by the te2t term or the vector

[
1

−1

]
– As t → −∞ the solution goes to 0, but is still dominated by te2t

– The equilibrium at 0 is unstable; it is an improper equilibrium (also known as an improper node
as all solutions emerge from it)

Lecture 14, Oct 7, 2022
Euler’s Method

• Iterative method: Solve y′ = f(t, y) by yn+1 = yn + hf(tn, yn)

Figure 16: Comparison of errors in Euler’s method for y′ = 3
2 − t − 1

2 and y′ = 4 − t + 2y

• A larger step size always increases the error in Euler’s method
• Error accumulates in Euler’s method, but this is not always the case – sometimes the absolute error

can decrease
– Why do approximations work better sometimes?

• Notice the left has a solution of y(t) = 7−2t−Ce− t
2 and the right has a solution of y(t) = −7

4 + 1
2 t+Ce2t

– In the left one, all solutions converge towards y(t) = 7 − 2t, while in the right solution diverge
– A small error in the left eventually decays away, while a small error in the right blows up

18



Figure 17: Comparison of solutions for y′ = 3
2 − t − 1

2 and y′ = 4 − t + 2y

Lecture 15, Oct 13, 2022
Errors in Numerical Approximations

• Round-off errors
• Euler’s method relies on successive linear approximations
• Global truncation error: En = ϕ(tn) − yn, error accumulated across all steps

– We use yn instead of ϕ(tn) to determine yn+1 so errors can accumulate
• Local truncation error: Error due to the linear approximation only

Local Truncation Error

• Consider a general ODE y′ = f(t, y) with solution ϕ(t), so ϕ′(t) = f(t, ϕ(t))
• With Euler’s method, yn+1 = yn + hf(tn, yn)
• The error is |yn+1 − ϕ(tn+1)|
• Using a Taylor approximation: ϕ(tn+1) = ϕ(tn) + ϕ′(tn)h + 1

2ϕ′′(t̄n)h2 where tn < t̄n < tn + h

– This is an exact equality due to t̄n (Taylor’s Remainder Theorem)
– Note we assumed that ϕ is twice-differentiable and continuous in its derivatives

• The error is |ϕ(tn+1 − yn+1)| = (ϕ(tn) − yn) + h(f(tn, ϕ(tn)) − f(tn, yn)) + 1
2ϕ′′(t̄n)h2

– The term ϕ(tn) − yn = 0 because this is a local error
– Since ϕ(tn) = yn the middle term is also 0
– Therefore the error is 1

2ϕ′′(t̄n)h2

• To bound 1
2ϕ′′(t̄n)h2, we assume |ϕ′′(t)| ≤ M so |en| ≤ Mh2

2

Global Truncation Error

• The number of steps is n = T − t0

h

• The global truncation error can be approximated as n
Mh2

2 = (t − t0)Mh

2
• Notice the global truncation error decreases linearly with h

– Euler’s method is a first-order method because the power of h is 1
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Assumptions

• For ϕ′′ to be continuous to invoke the Taylor series, we need ∂f

∂t
(t, ϕ(t))+ ∂f

∂y
(t, ϕ(t))f(t, ϕ(t)) continuous

since ϕ′ = f(t, ϕ(t))
– This means we need f,

∂f

∂x
and ∂f

∂y
are continuous

Lecture 16, Oct 14, 2022
Numerical Integration Methods

• Riemann sums approximates the function as a series of constant value segments
• Trapezoidal rule approximates the function as a number of linear segments
• Simpson’s one-third rule approximates the function as a series of parabolas

– Take the current point, the next point, a point halfway, and fit a parabola

–
� b

a

f(x) dx ≈
�

abP (x) dx = b − a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
* This is just a closed-form solution for the integral of the parabola that passes through these 3

points

Figure 18: Simpson’s Rule

Improved Euler Method

• When we solve an ODE, we are essentially integrating: ϕ(tn+1) = ϕ(tn) +
� tn+1

tn

f(t, ϕ(t)) dt

• Euler’s method, yn+1 = yn + hf(tn, yn) is essentially approximating f as a constant value f(t, y) =
f(tn, yn)

– This essentially makes a Riemann sum – so what if we used a trapezoidal sum instead?
• This leads to the improved Euler method yn+1 = yn + h

f(tn, yn) + f(tn+1, yn+1)
2

– However, we can’t quite use yn+1 in the right hand side because we haven’t found it yet
– We can use Euler’s method to find an estimate for it
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Definition

The Improved Euler/Heun/(((((Abdullah Method:

yn+1 = yn + h
f(tn, yn) + f(tn + h, yn + hf(tn, yn))

2

• IEM is a second order method – local truncation error is O(h3) and global truncation error is O(h2)
– However, IEM requires two function evaluations per step
– But if h ≪ 1

2 this still makes IEM much more efficient

Runge-Kutta Method

Definition

The Runge-Kutta Method:

yn+1 = yn + h
sn1 + 2sn2 + 2sn3 + sn4

6

where
sn1 = f (tn, yn)

sn2 = f

(
tn + 1

2h, yn + 1
2hsn1

)
sn3 = f

(
tn + 1

2h, yn + 1
2hsn2

)
sn4 = f (tn + h, yn + hsn3)

• The Runge-Kutta method essentially approximates with a parabola (Simpson’s Rule)
• The derivative is evaluated at the current point, the next point, and also the point in the middle
• Runge-Kutta is a fourth order method – local truncation error is O(h5) and global truncation error is

O(h4)
– Each step requires 4 function evaluation

Adaptive Step Sizes
• What if we could use smaller step sizes where it’s needed?
• Run a standard step of Euler’s method, and one IEM step; if we assume that the IEM gives the absolute

truth, then the difference between the two approximations is the error
• The local truncation error should scale like h2

–
eest

n+1
h2 =

|yeuler
n+1 − yIEM

n+1 |
h2 ≈ const

• If we adjust the step size to hnew, with some new local truncation error ϵ, then ϵ

h2
new

≈ const

• Therefore if we want to keep the local truncation error ϵ constant, then we can have
eest

n+1
h2 = ϵ

h2
new
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Important

To keep the error rougly fixed at ϵ, adjust the step size as

hnew = h

√
ϵ

eest
n+1

where eest
n+1 = |yeuler

n+1 − yIEM
n+1 |

Lecture 17, Oct 17, 2022
First Order Linear Systems of Dimension n

• A general first order linear system can be described by x⃗′ = P (t) + g⃗(t)

Theorem

Given
x⃗′ = P (t) + g⃗(t), x⃗(t0) = y⃗0

and P (t), ⃗g(t) continuous over t0 ∈ (α, β), then there exists a unique solution in the interval (α, β)

• Note P : R 7→ nRn and g⃗ : R 7→ Rn

• We can always centre the problem, so from now we assume g⃗(t) = 0

Theorem

Principle of Superposition: Given
x⃗′ = P (t)x⃗

and x⃗1(t), x⃗2(t), · · · , x⃗n(t) are solutions, then

c1x⃗1(t) + c2x⃗2(t) + · · · + cnx⃗n(t)

is also a solution for any c1, c2, · · · , cn

This makes the set of all solutions a vector space

Definition

Functions x⃗1, x⃗2, · · · , x⃗n are linearly independent if

c1x⃗1(t) + c2x⃗2(t) + · · · + cnx⃗n(t) = 0⃗ =⇒ c1 = c2 = · · · = cn = 0

Definition

The Wronskian

W [x⃗1, x⃗2, · · · , x⃗n](t) = det

x⃗1 x⃗2 · · · x⃗n

 = det(X(t))

If det(X(t)) ̸= 0 for all t, then the solutions are independent
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Theorem

If x⃗1, x⃗2, · · · , x⃗n are linearly independent solutions, then any solution can be expressed as

x⃗(t) = c1x⃗1(t) + c2x⃗2(t) + · · · + cnx⃗n(t)

for some set of unique c1, c2, · · · , cn

Such a set of x⃗1, x⃗2, · · · , x⃗n is known as the fundamental set of the ODE

• This set of c1, c2, · · · , cn depends on the initial conditions: If x⃗(0) = b⃗, then c⃗ = X(0)−1b⃗

Lecture 18, Oct 20, 2022
The Matrix Exponential

• If a scalar IVP x′ = ax, x(0) = x0 can be solved by x = eatx0, then can we solve x′ = Ax, x(0) = x0
with x = eAtx0?

• We can define the matrix exponential eAt using a Taylor series, similar to a scalar exponential

Definition

The matrix exponential

eAt = I + At + 1
2!A

2t2 + 1
3!A

3t3 + · · · =
∞∑

k=0

Aktk

k!

• The matrix exponential has the same properties as the scalar exponential
– e0t = I

– d
dt

eAt = AeAt

– eA(t+τ) = eAteAτ

– (eAt)−1 = e−At

– AeAt = eAtA
– e(A+B)t = eAteBt, but only if AB = BA

Theorem

Given an ODE X ′ = AX,
Φ(t) = eAt

is a solution to this ODE, and satisfies Φ(0) = I

• Note that this is a matrix differential equation; this contains multiple solutions x1, x2, · · ·, which forms
the fundamental set

• The matrix exponential is also sometimes known as the special fundamental matrix, because its columns
are solutions that form a basis for the solution space

– The general solution x(t) can be written as x(t) = c1x1(t) + c2x2(t) + · · · = Φ(t)c
• If we are given an initial condition X(0) = x0, then x(0) = Φ(0)c =⇒ c = Φ(0)−1; since Φ(0) = I,

the IVP is satisfied by X(t) = x0Φ(t)
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Theorem

The IVP
x′ = Ax, x(0) = x0

is satisfied by
x(t) = eAtx0

Calculating The Matrix Exponential
• How do we take all those higher powers of A?
• Eigendecomposition: A = V DV −1 where D is a diagonal matrix of the eigenvalues and V is a matrix

of all the eigenvectors
– This works because AV = V D = DV

• Using eigendecomposition we can easily take higher powers: Ak = V DkV −1

– This is great because D is diagonal, so Dk simply has the diagonal entries to the power of k

– This allows us to write eAt = V eDtV −1, and eDt =

eλ1t 0 · · ·
0 eλ2t · · ·
...

...
. . .


Important

The IVP
x′ = Ax, x(0) = x0

is satisfied by
x = eAtx0 = V eDtV −1x0

Lecture 19, Oct 21, 2022
Second Order Linear Differential Equations

• A second order linear ODE can be expressed as y′′ = f(t, y, y′)
– Initial conditions y(t0) = y0, y′(t0) = y1
– Notice two initial conditions are needed because we have 2 integration constants

• A second order linear ODE can be expressed as y′′ + p(t)y′ + q(t)y = g(t)
• A second order ODE can be written in terms of two first order ODEs:

– Define x1 = y, x2 = y′

– y′′ = x′
2 = f(t, x1, x2)

– y′ = x2 = x′
1 =⇒ x′

1 = x2
• If we had a second order linear ODE y′′ + p(t)y′ + q(t)y = g(t), we can write it as a system of linear

ODEs:
– x′

1 = x2, x′
2 = −q(t)x1 − p(x)x2 + g(t)

– x⃗′ =
[

0 1
−q(t) −p(t)

]
x⃗ +

[
0

g(t)

]
– Initial conditions can be added as x⃗(t0) =

[
y0
y1

]
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Theorem

Existence and Uniqueness Theorem: Given

y′′ + p(t)y′ + q(t)y = g(t)

if p(t), q(t), g(t) are continuous over t0 ∈ (α, β), then there exists a unique solution over (α, β)

• Second order linear ODEs also obey the theorem of superposition

Lecture 20, Oct 24, 2022
Second Order Linear Homogeneous Autonomous ODE

• Consider the ODE: ay′′ + by′ + cy = 0

• Recall we can express this as x =
[

y
y′

]
, x = Ax =

[ 0 1

− c

a
− b

a

]
x

– The eigenvalues are: det(A − λI) = 0 =⇒ aλ2 + bλ + c = 0 =⇒ λ = −b ±
√

b2 − 4ac

2a

• The eigenvectors are v =
[

1
λ

]
• 3 cases for these eigenvalues:

– Real and distinct (overdamped)

* General solution x = c1eλ1t

[
1
λ1

]
+ c2eλ2t

[
1
λ2

]
, which gives y = c1eλ1t + c2eλ2t when λ are

distinct
– Real and equal (critically damped)

* λ1 = λ2 = − b

2a

* We only have a single eigenvector
[

1
λ

]
, so we need to find the generalized eigenvector

* (A − λI)w = v =⇒ w =
[
0
1

]
* This gives us x = c1eλ1tv1 + c2eλ1t(tv1 + w1) = c1eλt

[
1
λ1

]
+ c2eλt

[
t

λt + 1

]
* This gives y = c1eλt + c2teλt

– Complex conjugates (underdamped)

* λ1 = µ + iν, λ2 = µ − iν where µ = − b

2a
, ν =

√
4ac − b2

2a

* Construct the solution just like before and use Euler’s identity: x = c1e(µ+iν)t

[
1

µ + iν

]
+

c2e(µ−iν)t

[
1

µ − iν

]
= c1eµt

[
cos νt

µ cos νt − ν sin νt

]
+ c2eµt

[
sin νt

µ sin νt + ν cos νt

]
* This gives: y = c1eµt cos νt + c2eµt sin νt

• Example: y′′ + 5y′ + 6y = 0
– Eigenvalues are λ1 = −2, λ2 = −3, real and distinct

– Eigenvectors are then v1 =
[

1
−2

]
, v2 =

[
1

−3

]
• Example: y′′ + y′ + y = 0

– Eigenvalues are complex conjugates: λ = −1
2 ± i

√
3
2

• Example: y′′ − y′ + 1
4y = 0
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– Eigenvalues are equal: λ1 = λ2 = 1
2

Summary

The ODE ay′′ + by′ + cy = 0 is solved by:
1. When λ are real and distinct:

y = c1eλ1t + c2eλ2t

2. When λ are complex conjugates:

y = c1eµt cos νt + c2eµt sin νt

3. When λs are real and equal:
y = c1eλ1t + c2teλ1t

where
λ = −b ±

√
b2 − 4ac

2a

and λ = µ ± iν when λ are complex

Lecture 21, Oct 27, 2022
Second Order Linear Nonhomogeneous ODEs

• Recall: All solutions to Ax = b can be constructed by taking a particular solution to it and adding a
solution to Ax = 0

• Consider a nonhomogeneous second order linear ODE ay′′ + by′ + cy = g(t) and its homogeneous
counterpart ay′′ + by + cy = 0

• 2 observations:
1. Let yh be a solution to the homogeneous ODE and yp be a particular solution to the nonhomogeneous

ODE, then yh + yp solves the nonhomogeneous ODE
2. Let yp, ŷp be two particular solutions to the nonhomogeneous ODE, then ŷp − yp = yh solves the

homogeneous ODE
• This means that given a nonhomogeneous ODE, we simply have to find a particular solution to it yp,

and the general solution yh to the homogeneous ODE; then the general solution to the nonhomogeneous
ODE is the sum of the two

Important

Given
ay′′ + by′ + cy = g(t)

the general solution can be found by
yg = yh + yp

where yh is the general solution to the homogeneous ODE ay′′ + by + cy = 0 and yp is one particular
solution to the homogeneous ODE

Method of Undetermined Coefficients
• Involves guessing “trial solutions” based on the form of g(t)

– For ert we guess Aert

– For sin(ωt) or cos(ωt) we guess A sin(ωt) + B cos(ωt)
– For degree n polynomial we guess B0 + B1t + B2t2 + · · · + Bntn
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– For a combination of these, we guess a combination of the corresponding guesses
– If the guess solution appears in the homogeneous solution, multiply by t

• Example: y′′ − 3y − 4y = 3e2t

– λ = −1, 4
– General homogeneous solution: yh(t) = c1e−t + c2e4t

– Guess: y = Ae2t

* Plug this in we get 4Ae2t − 6Ae2t − 4Ae2t = 3e2t

* −6A = 3 =⇒ A = −1
2

– Particular solution: yp = −1
2e2t

– General solution: y = −1
2e2t + c1e−t + c2e4t

• Example: y′′ − 3y′ − 4y = 2e−t

– General homogeneous solution: yh(t) = c1e−t + c2e4t

– Guess: y = Ae−t

* Plugging this in: Ae−t + 3Ae−t − 4Ae−t = 2e−t

* However this is equal to zero! This is because e−t is already in our homogeneous solution
– Guess: y = Ate−t

* y′ = Ae−t − Ate−t

* y′′ = −2Ae−t + Ate−t

* Plugging this in and solving we get A = −2
5

Example Problem: RLC Circuit

Figure 19: RLC Circuit

• Voltage across the inductor is L
dI

dt
; voltage across a capacitor is Q

C

• From Kirchhoff’s Voltage Law: L
dI

dt
+ RI + Q

C
= E(t)

– Since I = dQ

dt
we can transform this into L

d2Q

dt2 + R
dQ

dt
+ Q

C
= E(t)

– This is a second order linear nonhomogeneous ODE
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Lecture 22, Oct 28, 2022
Method of Variation of Parameters

• Consider a nonhomogeneous system: x⃗′ = P (t)x⃗ + g⃗(t)
– We solve the homogeneous system x⃗′ = P (t)x⃗
– To do this we need a fundamental set { x⃗1(t), x⃗2(t) }

* This means x⃗′
1 = P (t)x⃗1, x⃗′

2 = P (t)x⃗2
– We can write X ′ = P (t)X, where X =

[
x⃗1 x⃗2

]
– From this we can construct a general solution of the homogeneous system: x⃗ = c1x⃗1(t) + c2x⃗2(t)

• Guess solution: u1(t)x⃗1(t) + u2(t)x⃗2(t) = X(t)u⃗(t) where u⃗ =
[
u1(t)
u2(t)

]
• Substitute into nonhomogeneous equation: (X(t)u⃗(t))′ = X ′(t)u⃗(t) + X(t)u⃗′(t) = P (t)X(t)u⃗(t) + g⃗(t)

– Since X ′(t) = P (t)X(t) this simplifies to just X(t)u⃗′(t) = g⃗(t)
• Therefore u⃗′(t) = X(t)−1g⃗(t)

– We know X(t) is invertible since the fundamental matrix always has a nonzero Wronskian
• Now we can integrate: u⃗(t) = c⃗ +

�
X(t)−1g⃗(t) dt

• x⃗ = X(t)u⃗(t) = X(t)c⃗ + X(t)
�

X(t)−1g⃗(t) dt

– Notice this consists of X(t)c⃗, which is the general solution to the homogeneous equation, plus a
particular solution to the nonhomogeneous equation

• Note: For a 2x2 problem, X(t)−1 = 1
W [x⃗1(t), x⃗2(t)]

[
x22(t) −x12(t)

−x21(t) x11(t)

]
Theorem

The general linear nonhomogeneous system

x⃗′ = P (t)x⃗ + g⃗(t)

is solved by
x⃗ = X(t)u⃗(t) = X(t)c⃗ + X(t)

�
X(t)−1g⃗(t) dt

where X(t) is the fundamental matrix of the system, and c⃗ is a vector of constants determined by
initial conditions

Second Order Nonhomogeneous ODE
• Consider the ODE y′′ + p(t)y′ + q(t)y = g(t)

– We can use variation of parameters to solve this

• Convert to system: x⃗ =
[

0 1
−q(t) −p(t)

]
x⃗ +

[
0

g(t)

]
• Notice the fundamental matrix has the structure X(t) =

[
y1(t) y2(t)
y′

1(t) y′
2(t)

]
• The particular solution: X(t)

�
X(t)−1g⃗(t) dt = 1

W [y⃗1(t), y⃗2(t)]

[
y′

2(t) −y2(t)
−y′

1(t) y1(t)

] [
0

g(t)

]
dt

= X(t)
� 1

W [y⃗1(t), y⃗2(t)]

[
−g(t)y2(t)
g(t)y1(t)

]
dt

= −
[
y1(t)
y′

1(t)

] � 1
W

g(t)y2(t) dt +
[
y2(t)
y′

2(t)

]� 1
W

g(t)y1(t) dt

• We can now extract a particular solution for y: yp = −y1(t)
� 1

W
g(t)y2(t) dt + y2(t)

� 1
W

g(t)y1(t) dt
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Theorem

A particular solution to the general second order linear nonhomogeneous ODE

y′′ + p(t)y′ + q(t)y = g(t)

is
yp = −y1(t)

� 1
W

g(t)y2(t) dt + y2(t)
� 1

W
g(t)y1(t) dt

where { y1, y2 } is the fundamental set of the homogeneous solution and

W =
∣∣∣∣y1 y2
y′

1 y′
2

∣∣∣∣
Example

• y′′ + 4y = 3
sin t

• Homogeneous solution:
– λ = ±2i
– Use the formula for the complex case: y = c1eµt cos(νt) + c2eµt sin(νt)
– y1 = cos(2t), y2 = sin(2t)

• By variation of parameters, y = c1 cos(2t)+c2 sin(2t)−cos(2t)
2

� 3
sin t

sin(2t) dt+sin(2t)
2

� 3
sin t

cos(2t) dt

Lecture 23, Oct 31, 2022
The Laplace Transform

Definition

The Laplace transform of a function f(t) is

F (s) = L {f} (s) =
� ∞

0
e−stf(t) dt

• The Laplace transform is analogous to a change of coordinates in linear algebra
– We’re taking a function f(t) to get back another function F (s)
– This integral of the product of functions is akin to a dot product, but for functions; e−st is a basis

* We like a basis of e−st because its derivative is proportional to itself

Example Transforms

• L {1} =
� ∞

0
e−st dt

=
[
−1

s
e−st

]∞

0

= lim
A→∞

(
−e−sA

s
+ 1

s

)
= 1

s
, s > 0
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• L
{

e(a+ib)t
}

=
� ∞

0
e−ste(a+ib)t dt

=
[

1
a − s + ib

e((a−s)+ib)t

]∞

0

= lim
A→∞

(
e((a−s)+ib)A

a − s + ib
− 1

a − s + ib

)
= 1

s − (a + ib) , s > a

• L {sin t} = L
{

eit − e−it

2i

}
= 1

2i
L

{
eit

}
− 1

2i
L

{
e−it

}
= − 1

2i

1
−s + i

+ 1
2i

1
−s − i

= − 1
2i

−s − i − (−s + i)
(−s)2 − i2

= − 1
2i

−2i

s2 + 1

= 1
s2 + 1

• In reality we just look these up from a table

Linearity of the Laplace Transform

Theorem

The Laplace transform is linear:

L {c1f1(t) + c2f2(t)} = c1L {f1(t)} + c2L {f2(t)}

If L {f1} exists for t > s1 and L {f2} exists for t > s2 then the linear combination exists for
t > max(s1, s2)

Lecture 24, Nov 3, 2022
Definition of the Laplace Transform (again)

• So far the solutions to first order and second order ODEs all seem to contain exponentials and sinusoids
• Can we transform these solutions to something nicer?
• The Fourier transform: F {f} (ω) =

� ∞

−∞
e−iωtf(t) dt

– This takes you from the time domain to the frequency domain
– Can be though of as a dot product between the function of various sines and cosines of various

frequencies
– If we have a sine or a cosine, we get a very simple representation when taken to the frequency

domain
– However the Fourier transform doesn’t work well with exponentials, which is why we need the

Laplace transform
• The Laplace transform: L {f} (s) =

� ∞

0
e−stf(t) dt

– Note L {f} (σ + iω) =
� ∞

0
e−(σ+iω)tf(t) dt
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* When σ = 0, we get the Fourier transform
– The Fourier transform is a slice of the Laplace transform
– The Fourier transform can only handle sines and cosines, which are pure oscillations that do not

decay or grow, whereas with the Laplace transform we can also handle decaying exponentials
* This makes it suitable for functions that appear in ODEs

Existence of the Laplace Transform
• f(t) needs to be piecewise continuous for the integration to be possible
• f(t) must not dominate the e−st, otherwise the integral will diverge
• If |f(t)| ≤ Keat for t < M , then the Laplace transform exists if and only if a < s

– We can show this using the limit comparison test

Theorem

The Laplace transform L {f} (s) exists for s > a if:
1. f is piecewise continous on 0 ≤ t ≤ A for any positive A
2. f is of exponential order so that |f(t)| ≤ Keat when t ≥ M

• Proof: L {f} (s) =
� ∞

0
e−stf(t) dt =

� M

0
e−stf(t) dt +

� ∞

M

e−stf(t) dt

– The first part exists by hypothesis 1, the second exists by hypothesis 2

Lecture 25, Nov 4, 2022
Properties of the Laplace Transform

1. Exponential in t is a shift in s: L {f(t)} = F (s), s > a =⇒ L
{

ectf(t)
}

= F (s − c), s > a + c

• e.g. L
{

e−2t sin(4t)
}

= 4
(s + 2)2 + 16 , s > 2

2. Derivative in t is a multiplication by s: L {f ′(s)} = sL {f(t)} − f(0)
• Derived by integration by parts
•

� ∞

0
e−stf ′(t) dt =

[
e−stf(t)

]∞
0 + s

� ∞

0
e−stf(t) dt

= sL {f(t)} − f(0)
• We need to assume that the function does not blow up

3. Corollary: L
{

f (n)(t)
}

= snL {f(t)} − sn−1f(0) − sn−2f ′(0) − · · · − sf (n−2)(0) − f (n−1)(0)

• e.g. d4y

dt4 − y = 0 with initial conditions y(0) = 0,
dy

dt

∣∣∣∣
t=0

= 0,
d2y

dt2

∣∣∣∣
t=0

= 0,
d3y

dt3

∣∣∣∣
t=0

= 1

– Take the Laplace transform of both sides
– s4L {y(t)} − s3f(0) − s2f ′(0) − sf ′′(0) − f ′′′(0) − L {y} = 0
– s4L {y(t)} − L {y} = 1 =⇒ L {y(t)} = 1

s4 − 1
• Starting with an ODE in t, we get a polynomial in s

4. Multiplication by tn is an n-th derivative in s: L {tnf(t)} = (−1)nF (n)(s)

Lecture 26, Nov 14, 2022
Solving ODEs With Laplace Transforms

• Apply the Laplace transform to both sides of an ODE and we can turn the differential equation into an
algebraic equation in the Laplace domain
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• Instead of solving the ODE in time domain directly, we apply the Laplace transform, solve the algebraic
equation in the Laplace domain, and then use the inverse Laplace transform to turn it back into the
time domain

• When we rearrange for Y (s) we usually get a rational function, the ratio of one polynomial to another

Inverse Laplace Transform

• f(t) = L−1 {F} (t) = 1
2πi

lim
T →∞

� γ+iT

γ−iT

estF (s) ds

– Problem: We don’t know how to do this integral!

Theorem

Given two piecewise continuous, exponential order functions f(t), g(t) such that

L {f} = L {g}

Then f(t) = g(t) at all points where both f and g are continuous

• This theorem guarantees us that when we apply the inverse transform, we actually get the solution
provided we have continuity

• Note the inverse Laplace transform is linear like the forward transform
• Example: s + 1

s2 + 2s + 5
– Complete the square: s + 1

(s + 1)2 + 4
– Note eat cos(bt) = s − a

(s − a)2 + b2

– Using the table, L−1
{

s + 1
s2 + 2s + 5

}
= e−t cos(2t)

• Often we get something that’s not in the table; in general if we get F (s) = P (s)
Q(s) , then we need to do

partial fractions
• Let Q(s) = (s − s1)(s − s2) · · · (s − sn) then we can rewrite F (s) = a1

s − s1
+ a2

s − s2
+ · · · + an

s − sn

– With repeated roots, if Q(s) = (s − s0)k then F (s) = a1

s − s0
+ a2

(s − s0)2 + · · · + ak

(s − s0)k

– With complex roots, Q(s) = (s − (µ + iν))k(s − (µ − iν))k then F (s) = a1(s − µ) + b1ν

(s − µ)2 + ν2 + · · · +

ak(s − µ) + bkν

((s − µ)2 + ν2)k

• Example: s − 2
s2 − 4s − 5

– Q = (s − 5)(s + 1)
– s − 2

(s − 5)(s + 1) = A

(s − 5) + B

(s + 1)

– s − 2 = (s + 1)A + (s − 5)B =⇒ s − 2 = s(A + B) + (A − 5B) =⇒

{
A + B = 1
A − 5B = −2

– A = 1
2 , B = 1

2
– s − 2

s2 − 4s − 5 = 1
2(s − 5) + 1

2(s + 1)

– From the table, L−1
{

s − 2
s2 − 4s − 5

}
= 1

2e5t + 1
2e−t
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Lecture 27, Nov 17, 2022
Unit Step Function (Heaviside Function)

• Heaviside step function (aka indicator function): u(t) =
{

0 t < 0
1 t ≥ 0

• Translated step function: uc(t) =
{

0 t < c

1 t ≥ c

• Indicator step function: ucd(t) = uc(t) − ud(t) =
{

0 t < c, t ≥ d

1 c ≤ t < d

• From the step function we can construct other functions, e.g. a triangular pulse is (−1 + t)u12(t) + (3 −
t)u23(t)

Figure 20: Triangular pulse

Laplace Transform of the Step Function
• If L {f(t)} = F (s), s > a ≥ 0, then L {uc(t)f(t − c)} = e−csF (s), s > a

– This is the dual of L
{

ectf(t)
}

= F (s − c)
• An exponential in the time domain is a shift in the s domain; an exponential in the s domain is also a

shift in the time domain
• L {u(t)} = 1

s
, s > 0

• L {uc(t)} = e−cs

s
, s > 0

• L {ucd(t)} = L {uc(t)} − L {ud(t)} = e−cs − e−ds

s
, s > 0

Periodic Functions
Definition

A function f is periodic if
f(t + T ) = f(t)

where T is the period

• The window function: fT (t) = f(t)(1 − uT (t)) =
{

f(t) t ≤ T

0 otherwise

• We can use it to construct periodic functions as f(t) =
∞∑

n=0
fT (t − nT )unT (t)

• Using this, we can Laplace transform any periodic function
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– L {f(t)} =
∞∑

n=0
L {fT (t − nT )unT (t)}

=
∞∑

n=0
e−nT sL {fT (t)}

= L {fT (t)} 1
1 − e−T s

Theorem

If f is periodic with period T and is piecewise continuous on [0, T ], then

L {f(t)} = FT (s)
1 − e−T s

where FT (s) = L {fT (t)} = L {f(t)(1 − uT (t))}

Lecture 28, Nov 18, 2022
Differential Equations With Discontinuous Forcing Functions

• Example: flipping a switch, or turning a knob are all examples of discontinuous forcing functions

• Example 1: y′′ + 4y = g(t), y(0) = 0, y′(0) = 0, g(t) =


0 0 ≤ t < 5
t − 5

5 5 ≤ t < 10
1 t ≥ 10

– This forcing function is known as a ramp
– First express g(t) in terms of step functions: g(t) = t − 5

5 u5(t) − t − 10
5 u10(t)

– L {g} = 1
5L {(t − 5)u5(t) − (t − 10)u10(t)} = 1

5s2 (e−5s − e−10s)
– L {y′′ + 4y} = s2Y (s) + 4Y (s) = L {g}
– Y (s) = (e−5s − e−10s) 1

5s2(s2 + 4)

– Let H(s) = 1
s2(s2 + 4) , then y(t) = u5(t)h(t − 5) − u10(t)h(t − 10)

5 where h(t) = L−1 {H(s)}

– By partial fractions H(s) =
1
4
s2 −

1
4

s2 + 4 =⇒ h(t) = 1
4 t − 1

8 sin(2t)

• Example 2: y′′ + π2y = f(t), y(0) = 0, y′(0) = 0 where f(t) is a square wave
– Use the periodic function Laplace transform formula
– We need a window function f2 which we could construct as f2 = u0(t) − u1(t)
– F2(s) = 1

s
(1 − e−s)

– From the previous lecture F (s) = F2(s)
1 − e−st

= 1 − e−s

s(1 − e−2s) = 1 − e−s

s(1 − e−2s)(1 + e−2s) = 1
s(1 + e−s)

– L
{

y′′ + π2y
}

= (s2 + π2)Y (s) = F (s) =⇒ Y (s) = 1
s(1 + e−s)(s2 + π2) = 1

s(s2 + π2)
1

1 + e−s

– Let H(s) = 1
s(s2 + π2)

– Y (s) =
∞∑

k=1
(−1)ke−ksH(s)

– By partial fractions h(t) = 1
π2 (1 − cos(πt))
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Figure 21: Ramp forcing function

Figure 22: Example 1 solution
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– Therefore y(t) =
∞∑

k=0
(−1)k 1

π2 (1 − cos(π(t − k)))uk(t)

Figure 23: Square wave forcing function

Figure 24: Example 2 solution

Lecture 29, Nov 21, 2022
Impulse Functions

• For some number ϵ we can define a delta epsilon function δϵ(t) = u0(t) − uϵ(t)
ϵ

=


1
ϵ

0 ≤ t ≤ ϵ

0 otherwise
• The Dirac delta function is lim

ϵ→0
δϵ(t)

– At a single point, the value is infinite
– The integral over the peak is 1

• L {δϵ(t)} = L
{

u0(t) − uϵ(t)
ϵ

}
= 1 − e−ϵs

ϵs
• Consider y′′ + y = I0δϵ(t), y(0) = 0, y′(0) = 0

– L {y′′ + y′} = (s2 + 1)Y (s)
– Y (s) = I0

ϵ
(1 − e−ϵs) 1

s(s2 + 1)
– Let H(s) = 1

s(s2 + 1) =⇒ h(t) = 1 − cos(t)

– Y (s) = I0

ϵ
(H(s) − e−ϵsH(s)) =⇒ y(t) = I0

ϵ
(u0(t)(1 − cos(t)) − uϵ(t)(1 − cos(t − ϵ)))
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– yϵ(t) =


0 t ≤ 0
I0

ϵ
(1 − cos(t)) 0 ≤ t ≤ ϵ

I0 (cos(t − ϵ) − cos(t)))
ϵ

t > ϵ

– lim
ϵ→0

yϵ(t) = y(t) =

0 t ≤ 0

−I0
d
dt

cos(t) t > 0
=

{
0 t ≤ 0
I0 sin(t) t > 0

– y(t) = I0u(t) sin(t)

The Dirac Delta Function
Definition

The Dirac delta function is the function δ(t) with the following properties:
• δ(t − t0) = 0 whenever t ̸= t0

•
� b

a

δ(t − t0) dt =
{

1 a ≤ t0 ≤ b

0 otherwise

•
� b

a

f(t)δ(t − t0) dt = f(t0)

• Using the sifting property, we have L {δ(t − t0)} = e−st0 and so L {δ(t)} = 1

Lecture 30, Nov 28, 2022
Convolutions

Definition

The convolution of two functions f(t) and g(t) is

(f ∗ g)(t) =
� t

0
f(t − τ)g(τ) dτ

The discrete version for two sequences f [n] and g[n] is

(f ∗ g)[n] =
∞∑

m=−∞
f [m]g[n − m]

• Taking one function, flipping it around, shifting it by some amount, and seeing how much the two
functions correlate

• Properties:
– Commutativity: f ∗ g = g ∗ f
– Distributivity: f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2
– Associativity: (f ∗ g) ∗ h = f ∗ (g ∗ h)
– Zero: f ∗ 0 = 0 ∗ f = 0

• Convolution in time domain is multiplication in s domain: L {f ∗ g} = L {f} L {g} (Convolution
Theorem)

– This also holds for the Fourier transform
– Now if we have to take the inverse Laplace transform of some product, we can just use a convolution!
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Input-Output Problem
• Consider the ODE ay′′ + by′ + cy = g(t), y(0) = y0, y′(0) = y1

– Laplace transform: (as2 + bs + c)Y (s) − (as + b)y0 − ay1 = G(s)

– Y (s) = (as + b)y0 + ay1 + G(s)
as2 + bs + c

– Let H(s) = 1
as2 + bs + c

be the transfer function of this system
– Y (s) = H(s)((as + b)y0 + ay1) + H(s)G(s)

• We get the solution y(t) = L−1 {H(s)((as + b)y0 + ay1))} +
� t

0
h(t − τ)g(τ) dτ

– The first part of this, L−1 {H(s)((as + b)y0 + ay1))}, is the free response
* This is the response of the system to the initial conditions y(0) and y′(0) only, disregarding

the forcing function
* This can be thought of as the solution to the homogeneous system

– The second part,
� t

0
h(t − τ)g(τ) dτ , is the forced response

* This is the response of the system to g(t) only, without any initial conditions (i.e. y(0) =
y′(0) = 0)

* This can be thought of as a particular solution to the non-homogeneous system
– Combining the two we get the total response y(t)

• Note the forced response is H(s)G(s); if we take g(t) = δ(t), then H(s)G(s) = H(s)L {δ(t)} = H(s)
– The transfer function H(s) is simply the impulse response of ay′′+by′+cy = δ(t), y(0) = 0, y′(0) = 0
– Knowing the impulse response of the system allows us to easily determine the forced response

Lecture 31, Dec 1, 2022
Example

• System: y′′ + 2y′ + 5y = g(t)
• Transfer function: H(s) = 1

s2 + 2s + 5 = 1
(s + 1)2 + 4

• Impulse response: h(s) = L−1 {H(s)} = 1
2e−t sin(2t)

• Homogeneous solution: λ = −1 ± 2i =⇒ yg(t) = e−t(c1 cos(2t) + c2 sin(2t))

• Particular solution (forced response): h ∗ g =
� t

0

1
2e−(t−τ) sin(2(t − τ))g(τ) dτ

• General solution: y(t) = c1e−t cos(2t) + c2e−t sin(2t) +
� t

0

1
2e−(t−τ) sin(2(t − τ))g(τ) dτ

Partial Differential Equations (PDEs)
• Examples:

– Heat equation ∂u

∂t
= D

(
∂2u

∂x2 + ∂2u

∂y2

)
* Heat dispersing in an object

– Wave equation: ∂2y

∂t2 = c2 ∂2y

∂x2

– Laplace equation: ∂2V

∂x2 + ∂2V

∂y2 = 0
• PDEs have more than one variable, whereas ODEs only have one variable x or t
• Consider 1D heat conduction along a cylinder, with temperature u(x, t)
• PDE: ut = a2uxx, for 0 < x < L, t > 0

– α is the thermal diffusivity
– Intuition: Points that are more “concentrated” in heat will have that heat spread out faster
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– Initial conditions: u(x, 0) = f(x), 0 ≤ x ≤ L
* Initial temperature distribution

– Boundary conditions: u(0, t) = 0, u(L, t) = 0, t > 0
* Temperature at both ends of the rod is zero

• How would we approach something like this?
• Separation of variables: guess solution u(x, t) = X(t)T (t)

– Substitution into ODE: X ′′

x
= 1

α2
T ′

T
– Notice the left hand side is only a function of x while the right hand side is only a function of t, so

for both to equal each other for all x and t, both must be constants

– X ′′

X
= 1

α2
T ′

T
= −λ

– This gives us two ODEs:
{

X ′′ + λX = 0
T ′ + α2λT = 0

Lecture 32, Dec 2, 2022
Solving the Heat Equation

• We separated the system:
{

X ′′ + λX = 0
T ′ + α2λT = 0

• In X: X ′′ + λX = 0 with boundary conditions X(0) = 0, X(L) = 0
– This gives us the general solution X(x) = c1 cos(

√
λx) + c2 sin(

√
λx)

– Using boundary conditions we have c1 = 0, c2 sin(
√

λL) = 0

– This gives us solutions of Xn(x) = sin
(nπx

L

)
for integers n, giving λn = n2π2

L2

– Note X(x) is the eigenfunction and λ is the eigenvalue of the ∂2

∂x2 operator

• Substituting λ into the time ODE, we get T (t) ∝ exp
(

−n2π2α2

L2 t

)
• This gives us the set of fundamental solutions un(x, t) = sin

(nπx

L

)
e− n2π2α2

L2 t

• The general solution is u(x, t) =
∞∑

n=1
cnun(x, t) =

∞∑
n=1

cn sin
(nπx

L

)
e− n2π2α2

L2 t

• With the initial condition f(x) = u(x, 0) =
∞∑

n=1
sin

(nπx

L

)
• Now we can get cn as the Fourier coefficients: cn = 2

L

� L

0
f(x) sin

(nπx

L

)
dx

Lecture 33, Dec 5, 2022
Piecewise Continuous Functions as Vectors

• The set of piecewise continuous functions on (a, b) is denoted by PC[a, b]
• This set is closed under scalar multiplication and addition, so it forms a vector space

• We define the inner product of two members of PC[a, b] as ⟨f, g⟩ =
� b

a

f(x)g(x) dx

– The inner product is like a more generalized dot product
– The usual properties of dot products are also satisfied: commutativity, linearity, distributivity,

and ⟨f, f⟩ = 0 if and only if f = 0

• Using the inner product we can define the norm as ∥f∥ =
√

⟨f, f⟩ =

√� b

a

(f(x))2 dx
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• f, g ∈ PC[a, b] are orthogonal if ⟨f, g⟩ =
� b

a

f(x)g(x) dx = 0

Definition

A set of functions
S = { ϕ1(x), ϕ2(x), · · · } ∈ PC[a, b]

are orthogonal if
⟨ϕn, ϕm⟩ = 0, n ̸= m

and orthonormal if
∥ϕn∥ = 1, ∀n

i.e. ⟨ϕn, ϕm⟩ = δmn

Fourier’s Theorem

• An important orthonormal set on PC[−L, L] is
{ √

2
L

1
2 ,

√
1
L

sin
(mπx

L

)
,

√
1
L

cos
(mπx

L

)
, · · · : m ∈ N

}
–
� π

−π

sin(nx) cos(mx) dx =
� π

−π

sin(nx) sin(mx) dx =
� π

−π

cos(nx) sin(mx) dx = δmnπ

Theorem

Fourier’s Theorem: suppose f is periodic with period 2L, f, f ′ ∈ PC[−L, L], then f can be expressed
as a Fourier series:

f(x) = a0

2 +
∞∑

m=1

(
am cos

(mπx

L

)
+ bm sin

(mπx

L

))
with Fourier coefficients given by

a0 = 1
L

⟨f(x), 1⟩ (1)

am = 1
L

〈
f(x), cos

(mπx

L

)〉
(2)

bm = 1
L

〈
f(x), sin

(mπx

L

)〉
(3)

• The Fourier theorem is the direct analogue of the fact that you can represent a vector in another basis
by taking the dot product of the vector with each of the basis vectors if the basis is orthonormal

– A Fourier transform is nothing but a change of basis
• In the case of the discrete Fourier transform, Ff = f̂ , and due to orthonormality F T f̂ = f
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