
Lecture 9, Sep 27, 2022
Additional Verilog Statements

• always block
– Statements in an always block execute sequentially
– In an always block, we don’t use assign
– = (as opposed to assign) is a blocking assignment; must be used inside always blocks and enforces

sequential execution order
• Conditionals such as if/else/else if must exist in an always block

– if without else generates a latch

module mux(input logic x1, x2, s,
output logic f);

always_comb // comb for combinational logic
begin // Enclose multiple statements, akin to {}

if (s == 0)
f = x1; // assign is not used

else
f = x2;

end
endmodule

• case statements
– Can be used to do pattern matching
– Instead of deriving a logic expression, we can let Verilog do it for us
– Also needs to be inside an always block
– default catches unspecified cases; without this the compiler will generate latches (more on this

later)

module seg7(input logic [3:0] sw,
output logic [6:0] h);

always_comb
begin

case (sw)
0: HEX0 = 7'b1000000;
1: HEX0 = 7'b1111001;
// ...
9: HEX0 = 7'b0000100;
// Catch cases that have not been specified, since sw can go up to 15
default: HEX0 = 7'b1111111;

endcase
end

endmodule

Karnaugh Maps (K-Maps)
• A method of optimizing logic expressions
• The point of logic simplification is to reduce the cost (area) of a circuit; for our purposes, our metric for

cost is the number of gates and inputs
– cost = # of gates + # of inputs

• Optimization using boolean algebra is awkward and error prone
– When optimizing using boolean algebra, we need to combine terms, but seeing that those combina-

tions are possible is challenging
• Karnaugh Maps are a type of truth table in which minterms that cam be combined are adjacent
• Example: 2-variable K-Map

1



x2

x1 0 1

0 m0 m2
1 m1 m3

• Looking at the first column, f = m0 + m1 = x̄1x̄2 + x̄1x2 = x̄1
– The second row: f2 = m1 + m2 = x̄1x2 + x1x2 = x2

• Example: f(x1, x2) =
∑

m(0, 1, 3)
– f = x̄1x̄2 + x̄1x2 + x1x̄2

* As it is the circuit has a cost of 17 (3 AND, 1 3-input OR, 2 NOT + 2 inputs per AND, 3
inputs per OR, 1 input per NOT)

– K-Map:

x2

x1 0 1

0 1 0
1 1 1

• This lets us simplify our circuit to f = x̄1 + x2 which only has a cost of 5
• To simplify using a K-Map, we group adjacent minterms in the map

– The second row shows that regardless of x1, as long as x2 is 1, the expression is 1, so that row
simplifies to x2

– The first column shows that regardless of x2, as long as x1 is 0, the expression is 1, so the row
simplifies to x̄1

• We can only group terms in group sizes of powers of 2 (for a 2 × 2 K-Map, we can group 2 terms or 4
terms)

2


	Lecture 9, Sep 27, 2022
	Additional Verilog Statements
	Karnaugh Maps (K-Maps)


