
Lecture 7, Sep 22, 2022
SystemVerilog HDL

• SystemVerilog is a hardware description language that allows the specification of logic functions using
high level abstractions

• Modules are blocks of hardware with inputs and outputs
• Example:

module basic_logic(input logic a, b, // logic: type - indicates boolean variables
output logic w, x, y, z);

// All these things happen at the same time -- not sequentially
// assign: describes combinational logic
assign w = a & b; // bitwise AND
assign x = a | b; // bitwise OR
assign y = ~a; // bitwise NOT
assign z = a ˆ b; // bitwise OR

endmodule

• Modules are not functions – they cannot call themselves

Multiplexers (Mux)

Figure 1: 2 to 1 multiplexer symbol

• A circuit that has an output f , controlled by either of two inputs x, y, based on an input s
– If s is 0, then f is controlled by x, else y

• Truth table:

sxy f

000 0
001 0
010 1
011 1
100 0
101 1
110 0
111 1

• Verilog:

module mux2to1(input logic x, y, s,
output logic f);

1

assign f = (~s & x) | (s & y);
endmodule

• Muxes can be extended to multiple inputs, and also multi-bit signals (buses)
– A slash with a number is drawn on a wire to indicate that it is a bus

• Example: 2-bit mux
– x and y are now 2-bit buses
– Implemented with 2 muxes

module mux2to1_2bit(input logic [1:0] x, y, // The [1:0] indicates a 2-bit bus
input logic s,
output logic [1:0] f);

// Note we cannot use a single assign statement
// since s is a scalar, x is a vector, so s & x would be a mismatch
assign f[1] = (~s & x[1]) | (s & y[1]);
assign f[0] = (~s & x[0]) | (s & y[0]);

endmodule

Adders
• Half adder: adding two one-bit numbers

– Max result can be 2, so output from the half adder is 2 bits s1, s0
• s1 = ab, s2 = a ⊕ b where ⊕ is the XOR operator

module ha(input logic a, b,
output logic [1:0] s);

assign s[1] = a & b;
assign s[0] = a ˆ b;

endmodule

• Full adder: includes a carry input
– Adding multiple bits involves inputs ai, bi and also a carry ci

– Each column (except for the rightmost bit) adds 3 bits (2 inputs plus a carry)
– Leftmost column produces a cout

ci ai bi ci+1 si

000 0 0
001 0 1
010 0 1
011 1 0
100 0 1
101 1 0
110 1 0
111 1 1

• ci+1 = ciai + cibi + aibi (carry is 1 if at least 2 inputs are 1, aka a majority function), si = ai ⊕ bi ⊕ ci

– si is a three-input XOR, equivalent to (ai ⊕ bi) ⊕ ci, which produces 1 if an odd number of inputs
is 1 (aka an odd function)

• The carry-out of each full adder is connected to the carry-in of the next bit (known as a ripple carry
adder)

• Verilog:

// Single bit full adder module
module fa(input logic a, b, cin,

output logic s, cout);
assign s = a ˆ b ˆ cin;

2

assign cout = (cin & a) | (cin & b) | (a & b);
endmodule

3

	Lecture 7, Sep 22, 2022
	SystemVerilog HDL
	Multiplexers (Mux)
	Adders

