Lecture 6, Sep 20, 2022

Functional Completeness of NAND and NOR

DeMorgan's theorem allows us to implement any SOP circuit can be implemented using only NAND gates:
Example: f = x₁x₂ + x₂x₃

ample:
$$f = x_1 x_2 + x_2 x_3$$

= $\overline{\overline{(x_1 x_2)}} + \overline{\overline{(x_2 x_3)}}$
= $\overline{\overline{x_1 x_2} \cdot \overline{x_2 x_3}}$

- For a POS circuit, convert to SOP first
- Any POS circuit can be implemented using NOR gates:

- Example:
$$f = (x_1 + x_2)(x_2 + x_3)$$
$$= \overline{x_1 + x_2} \cdot \overline{x_2 + x_3}$$
$$= \overline{x_1 + x_2} + \overline{x_2 + x_3}$$

– Likely, for a SOP circuit, convert to POS first

Example

- Gumball factory
- s_2 normally 0, but 1 if gumball is too large
- s_1 normally 0, but 1 if too small
- s_0 normally 0, but 1 if too light
- Desired behaviour: f = 1 when gumball is either (too large) or (too small and too light) - By inspection, $f = s_2 + s_1 s_0$
- Truth table:

$s_2 s_1 s_0$	f
000	0
001	0
010	0
011	1
100	1
101	1
110	1
111	1

- Minterms are the last 5 rows:
- $f = \bar{s}_1 s_1 s_0 + s_2 \bar{s}_1 \bar{s}_0 + s_2 \bar{s}_1 s_0 + s_2 s_1 \bar{s}_0 + s_2 s_1 s_0$
- Simplify: $f = \bar{s}_1 s_1 s_0 + s_2 \bar{s}_1 \bar{s}_0 + s_2 \bar{s}_1 s_0 + s_2 s_1 \bar{s}_0 + s_2 s_1 s_0$

$$= s_1 s_0 (\bar{s}_2 + s_2) + s_2 \bar{s}_1 (s_0 + \bar{s}_0) + s_2 \bar{s}_0 (\bar{s}_1 + s_0)$$

$$= s_1 s_0 + s_2 \bar{s}_1 + s_2 \bar{s}_0$$

$$= s_1 s_0 + s_2 (\bar{s}_1 + \bar{s}_0)$$

$$= s_1 s_0 + s_2 \bar{s}_1 s_0$$

$$= s_1 s_0 + s_2$$

Rule 7 + Distributivity Combination Distributivity DeMorgan's Theorem Rule 16

Example 2

• Derive a minimal POS expression for $f(x_1, x_2, x_3) = \prod M(0, 2, 4)$

$x_1 x_2 x_3$	f	\bar{f}
000	0	1
001	1	0
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
111	1	0

•
$$f = (x_1 + x_2 + x_3)(x_1\bar{x}_2 + x_3)(\bar{x}_1 + x_2 + x_3)$$

= $(x_1 + x_3)(x_2 + x_3)$

Combination (dual)

• Using the min terms of \bar{f} :

$$-\bar{f} = \bar{x}_1 \bar{x}_2 \bar{x}_3 + \bar{x}_1 x_2 \bar{x}_3 + x_1 \bar{x}_2 \bar{x}_3$$
$$= \bar{x}_1 \bar{x}_3 + \bar{x}_2 \bar{x}_3$$

 $= \bar{x}_1 \bar{x}_3 + \bar{x}_2 \bar{x}_3$ - Using DeMorgan's rule: $f = \bar{f} = \overline{\bar{x}_1 \bar{x}_3 + \bar{x}_2 \bar{x}_3} = \overline{\bar{x}_1 \bar{x}_2} \cdot \overline{\bar{x}_2 \bar{x}_3} = (x_1 + x_2)(x_2 + x_3)$