Lecture 3, Sep 13, 2022

Logic Circuits

- Transistors can be used as switches
 - Controlled by input x, either connects or disconnects A and B
 - -L(x) = x
- Two transistors in series forms an AND gate: $L(x_1, x_2) = x_1 \cdot x_2$, or $L(x_1, x_2) = x_1 x_2$
- Two transistors in parallel forms an OR gate: $L(x_1, x_2) = x_1 + x_2$
- A transistor shorting to ground forms a NOT gate: $L(x) = \bar{x}$, or L(x) = x'
 - Also referred to the complement of x

Logic Gates

• Using transistors is tedious, so we can represent each of these with gates:

- Sometimes NOT gates are simplified to just a bubble before the input to a gate
- Example: $S = a\bar{b} + \bar{a}b$

Truth Tables

x_1	x_2	AND
0	0	0
0	1	0
1	0	0
1	1	1
-	1	1
$\frac{1}{x_1}$	x ₂	OR
$\overline{x_1}$	<i>x</i> ₂	OR
$\frac{x_1}{0}$	x_2 0	OR 0

• Note AND and OR gates can be extended to an arbitrary number of inputs

Other Gates

• The XOR gate, output is 1 if two inputs are different:

 $- L = \bar{x}y + x\bar{y}$

* When extended to an arbitrary number of inputs, its output is 1 if there are an odd number of 1 inputs

• The NAND gate, output is 0 if both inputs are 1 (i.e. AND + NOT):

- $-L = \overline{(xy)}$
 - * An AND gate takes 6 transistors, but a NAND gate takes 4 transistors, so this is cheaper to build
- * NAND gates are functionally complete, i.e. you can build any gate with them
- The NOR gate, output is zero if at least one input is 1:

$$L = \overline{(x + x)}$$

 $= \overline{(x+y)}$ * NOR gates are also functionally complete