
Lecture 27, Nov 17, 2022
Using the Stack

• A region of memory used for temporary storage of data
– LIFO structure

• Starts at a large address offset, grows downward (i.e. to lower addresses)
• The stack pointer (in the sp register) points to the element at the top of the stack

– Adding a word to the stack decrements the stack pointer by 4
• The stack is important for subroutine calls since we can use it to save and restore registers

– By saving registers onto the stack, we can make sure a subroutine does not trample on the caller
• In RISC-V there are preserved registers and nonpreserved registers

– Preserved registers s0 to s11 and sp must take on the same values before and after a subroutine
call (i.e. subroutines must save these)

– Non-preserved registers t0 to t6 can be changed by subroutines (i.e. subroutines are free to modify
these)

* Registers a0 to a7 are also non-preserved
– In the example from the previous lecture, in order to respect the calling convention we need to

push the s registers onto the stack, or use the t registers
– Note this is only a convention and not enforced in hardware

• Example: pushing 3 registers onto the stack:

addi sp, sp, -12
sw s1, 8(sp)
sw s2, 4(sp)
sw s3, 0(sp)

• To restore the registers back:

lw s3, 0(sp)
sw s2, 4(sp)
lw s1, 8(sp)
addi sp, sp, 12

Nested Subroutines
• To call a subroutine from another subroutine, we need to save the ra register onto the stack
• Example:

int main() {
add6(11, 22, 33, 44, 55, 66);

}

int add6(int a, int b, int c, int d, int e, int f) {
return add3(a, b, c) + add3(d, e, f);

}

int add3(int x, int y, int z) {
return x + y + z;

}

_start:
Load all the arguments into registers
addi a0, zero, 11
addi a1, zero, 22
addi a2, zero, 33
addi a3, zero, 44

1

addi a4, zero, 55
addi a5, zero, 66
Call subroutine
jal add6

END:
ebreak

add6:
Push the return address register onto the stack
addi sp, sp, -4
sw ra, 0(sp)
Call add3, which makes a0 = a0 + a1 + a2
This will overwrite ra
jal add3
Save a0 temporarily
addi t0, zero, a0
Load the arguments and call add3 again
addi a0, zero, a3
addi a1, zero, a4
addi a2, zero, a5
jal add3
Add the 2 results
add a0, a0, t0
Return, but first pop ra off the stack
lw ra, 0(sp)
addi sp, sp, 4
jr ra

add3:
add a0, a0, a1
add a0, a0, a2
jr ra

• Using the stack we can push additional arguments onto it if we need more than 8 arguments
– Freeing these arguments is the responsibility of the caller – the callee does not restore the stack

pointer
• Caller save: t0 to t7, a0 to a7, sp if necessary
• Callee save: s0 to s11, saved and restored before the callee returns

2

	Lecture 27, Nov 17, 2022
	Using the Stack
	Nested Subroutines

