
Lecture 26, Nov 15, 2022
Subroutines (Functions)

• Allows code modularization and reuse
• Subroutines have input arguments and return values
• To invoke a subroutine we need to branch into it, but we need to branch back when the subroutine is

done, so branching is different here
• The jump and link instruction jal is used (the “link” part remembers how to get back)

– jal LABEL jumps to the label, and saves the program counter of the instruction after it into the
return address register, ra

• To return from a subroutine use the jump register instruction jr
– jr ra jumps back into the address in ra
– There is only one ra register, so if we want to call subroutines inside subroutines we need to use

the stack

Passing Arguments and Returning Values
• Calling subroutines involve a calling convention, an agreement between caller and callee

– The caller and callee need to agree on where the arguments and return values are stored
– The callee must also not interfere with the behaviour of the caller

* The subroutine must not change any registers that the caller are using
• In RISC-V the 8 registers a0 to a7 are used for function arguments, from left to right

– If we have more than 8 arguments, we need to use the stack
• The return value is stored in a0
• Example:

int main() {
add6(11, 22, 33, 44, 55, 66);

}

int add6(int a, int b, int c, int d, int e, int f) {
return a + b + c + d + e + f;

}

_start:
Load all the arguments into registers
addi a0, zero, 11
addi a1, zero, 22
addi a2, zero, 33
addi a3, zero, 44
addi a4, zero, 55
addi a5, zero, 66
Call subroutine
jal ADD6

END:
ebreak

ADD6:
Add all the values together
add s1, a0, a1
add s2, a2, a3
add s3, a3, a5
add s1, s1, s2
Set a0 to return value
add a0, s1, s3

1

Jump back
jr ra

• Note problem with this: generally we don’t want to use the s registers in the subroutine because the
caller may be using these!

– Solution is to use the stack

2

	Lecture 26, Nov 15, 2022
	Subroutines (Functions)
	Passing Arguments and Returning Values

