
Lecture 25, Nov 14, 2022
Program Flow (Continued)

• Jump instructions (unconditional branches): j LABEL
– Jump and link jal, jump register jr relate to subroutines (function calls)

• In a loop, we jump back to the beginning of the loop if we want to keep looping
• In an if/else statement, we jump over the “if” code if the condition is not true

Examples

• Continuously decrement s8 until it is zero:

LOOP1:
addi s8, s8, -1 # Decrement s8
bnez s8, LOOP1 # Jump back to the label if s8 is not zero

• Converting from C code:

if (s8 > s9) {
// THEN code

}
else {

// ELSE code
}
// AFTER code

ble s8, s9, ELSE1
THEN1:

THEN code
j AFTER1

ELSE1:
ELSE code

AFTER1:
AFTER code

• Note the conditional jump instructions can only compare against registers, not immediates, so we have
to load an immediate into a register first if we want to compare against a constant value

• For loop example:

for (s8 = 1; s8 < 5; s8++) {
s9 = s9 + s10;

}

addi s8, zero, 1
addi t0, zero, 5

LOOP3:
bge s8, t0, DONE
add s9, s9, s10
addi s8, s8, 1
j LOOP3

DONE:
Code after

Machine Code
• Assembly language is human readable, but ultimately compiled to machine code

1

• All instructions are encoded into 32 bits (even if they may not need as many), because regularity
supports simplicity, which improves performance

• RISC-V has 4 min instruction formats:
– R-type (register type): Instructions that use two register source operands, e.g. add

* Bits 31-25 (7) are the function code func7
• These are used if the instruction needs more bits than just the opcode to specify their

behaviour
* Bits 24-20 (5) represent source register #2 rs2
* Bits 19-15 (5) represent source register #1 rs1
* Bits 14-12 (3) are 3 more function bits func3
* Bits 11-7 (5) represent the destination register rd
* Bits 6-0 (7) represent the opcode op

• These identify the operation
– I-type (immediate type): Instructions that use a register and an immediate, e.g. addi

* Bits 31-20 (12) are the immediate value imm12
* Bits 19-15 (5) represent source register #1 rs1
* Bits 14-12 (3) are 3 function bits func3
* Bits 11-7 (5) represent the destination register rd
* Bits 6-0 (7) represent the opcode op
* Notice the regularity of how the 3 function bits, source register 1, destination register, and

opcode are in the same bits as in R-type
– S/B-type (store/branch type): Storing into memory or branching
– U/J-type (upper immediate/jump type): Load upper immediate or jump
– The type of instruction is part of the opcode

• Examples:
– add s2, s3, s4 (R-type)

* Opcode for add is 51, 0b0110011
* Both func7 and func3 are 0
* s2 is x18, 0b10010
* s3 is x19, 0b10011
* s4 is x20, 0b10100
* The final encoded instruction is 0000000'10100'10011'000'10010'0110011 or 0x01498933

– addi s0, s1, 15
* Opcode for addi is 19, function bits all 0
* s0 is x8, s1 is x9
* The final encoded instruction is 000000001111'01001'000'01000'0010011 or 0x00F48413

2

	Lecture 25, Nov 14, 2022
	Program Flow (Continued)
	Examples

	Machine Code

