Lecture 23, Nov 1, 2022

RISC-V Instructions Continued

e Arithmetic operations can only access registers and immediates, not main memory
— We need a memory instruction to first retrieve a value from memory before it can be used, and
then write back a value if needed
— This is known as a load-store architecture — we can only access memory via loads and stores
e Memory operations
— Load word instruction reads a data word from memory into a register (reads 4 bytes at once)
* e.g. lw s0, 8(zero) performs a = mem[2];
o 8is the offset address, (zero) is the base address
o We are using the zero register to start at address 0 and offset by 8, so we’re accessing
address 0x00000008
¢ Note memory is byte addressable, so address 8 is the third word
* Load word requires the address to be word-aligned, that is, a multiple of 4
e Can’t load a word that’s split up into two places in memory
— Store word instruction writes a data word from a register into memory (writes 4 bytes at once)
* e.g. sw s0, 12(zero) performs mem[3] = a;

Basic Assembly Program

.data # Global data section - stores data used by the whole program

LIST is a label, which we can use to refer to the data later
These 4 words could be stored anywhere, but they are guaranteed to be contiguous
LIST: .word 1, 2, 3, 4 ; Declare 4 words, inttialize to 1, 2, 3, 4

.text # Program instructions

_start: # The entry point of the program; another label
la s1, LIST # Load address of LIST into si
lw s2, 0(s1) # s2 = mem[LIST + 0]; s2 %5 now 1
lw s3, 4(s1) # 83 = mem[LIST + 4]; s3 is now 2
add s2, s2, s3 # s2 =1+ 2; 52 15 now 3
lw 83, 8(s1) # s3 = mem[LIST + 8]; s3 4is now 3
add s2, s2, s3 # s82 =3 + 3; s2 15 now 6
lw s3, 12(s1) # 83 = mem[LIST + 12]; s3 is now 4
add s2, s2, s3 #s2 =6 + 4; s2 15 now 10

END: ebreak # Transfer control over to the debugger
Without the ebreak, the processor keeps executing whatever is in memory

e .data, .global, .text are assembler directives — not instructions, but tell the assembler about what it
should do
— .data declares the global data section
* We can use this to store data used by the whole program
* In this example, it’s an array
— .text declares the section for the program itself
— .global declares something to be visible outside the file (for a multi-file program)
— .word declares the things that come next should take up an entire word of memory
e la is the load-address psuedo-instruction, which loads the address of some global data into a register

More Instructions

o Logic instructions
— Bitwise operations that operate on 2 source registers
— and s0, s1, s2 puts the bitwise AND of s1 and s2 into s0
— Similarly for or s0, s1, s2 and xor s0, sl, s2
— not s0, s1 puts the bitwise NOT of s1 into s0
* Actually a pseudo-instruction, compiles to xori s0, s1, -1
— Also have immediate versions andi, ori, xori

	Lecture 23, Nov 1, 2022
	RISC-V Instructions Continued
	Basic Assembly Program
	More Instructions

