
Lecture 22, Oct 31, 2022
Introduction to RISC-V

• One of the many instruction set architectures (ISAs)
• A newer, open source instruction set

– Designed recently so it’s less bloated and cleaner
• Different ISAs have different instructions, but some primitives are common across all of them
• The instruction set doesn’t define the underlying hardware – it exists as an interface between hardware

and software, but the hardware can be implemented in many different ways
• RISC-V comes in different flavours

– We will be using RISC-V 32I (32-bit integer)
• Instructions define operation and operands

– Operands can be registers, memory, constants, etc
– RISC-V has 32 registers, each 32 bits

RISC-V Instructions
• Arithmetic instructions

– e.g. an add operation:
* In C: a = b + c
* In assembly: add s0, s1, s2

• s0 holds a, s1 holds b, s2 holds c
• s1, s2 are source operands, s0 is the destination operand

– A subtraction would be sub s0, s1, s2
– e.g. a = b + c - d is add t0, s1, s2 and then sub s0, t0, s3

• Design principle: make the common case faster
– Use multiple simple instructions rather than one complex instruction, since simpler instructions

are faster in hardware
• Registers

– Internal to a processor; much faster to access than main memory, but there is a limited number
– In RISC-V the register set is x0 to x31, but there are special names:

* zero always holds the constant value 0
* s0 to s11, t0 to t6 are the “general purpose” registers, generally used to store variables
* ra, a0 to a7 are used for function calls
* sp, gp, fp are the stack pointer, global pointer, and frame pointer (more on this later)

• Constants (“immediate values”)
– These values are immediately available as part of the instruction (no fetching from memory

necessary)
– Use addi instruction: addi s0, s0, 4 performs a = a + 4

* Note there is no subi instruction, but we can use addi with a negative number
– We can also initialize values using immediates, by using an addi with the zero register

* e.g. addi s4, zero, -78 initializes s4 to -78
– Use 0x prefix for a hexadecimal number, 0b for a binary number
– Immediates can only be up to 12 bit two’s complement numbers since we need to use the other 20

bits for the instruction
* The numbers are sign-extended to 32 bits

– If the numbers are bigger than 12 bits:
* Use lui, load upper immediate, followed by an addi

• lui allows specification of a 20-bit value, which is loaded into the most significant 20 bits
of the instruction and sets the rest to 0

• The addi can add in the other 12 bits
• e.g. if we want a = 0xABCDE123 we can do lui s2, 0xABCDE followed by addi s2, s2,

0x123
* Alternatively we can use a pseudo-instruction li, load 32-bit immediate, and just do li s2,

1



0xABCDE123
• The assembler converts the li into lui and addi
• Pseudo-instructions make our lives easier; they are not real instructions but are converted

into real instructions by the assembler

2


	Lecture 22, Oct 31, 2022
	Introduction to RISC-V
	RISC-V Instructions


