Lecture 22, Oct 31, 2022
Introduction to RISC-V

o One of the many instruction set architectures (ISAs)
e A newer, open source instruction set
— Designed recently so it’s less bloated and cleaner
« Different ISAs have different instructions, but some primitives are common across all of them
e The instruction set doesn’t define the underlying hardware — it exists as an interface between hardware
and software, but the hardware can be implemented in many different ways
e RISC-V comes in different flavours
— We will be using RISC-V 32I (32-bit integer)
e Instructions define operation and operands
— Operands can be registers, memory, constants, etc
— RISC-V has 32 registers, each 32 bits

RISC-V Instructions

e Arithmetic instructions
— e.g. an add operation:
*InC:a=b+c
* In assembly: add sO, s1, s2
e s0 holds a, s1 holds b, s2 holds ¢
e s1, s2 are source operands, s0 is the destination operand
— A subtraction would be sub s0, s1, s2
—eg.a=b+c - disadd t0, s1, s2 and then sub s0, t0, s3
e Design principle: make the common case faster
— Use multiple simple instructions rather than one complex instruction, since simpler instructions
are faster in hardware
o Registers
— Internal to a processor; much faster to access than main memory, but there is a limited number
— In RISC-V the register set is x0 to x31, but there are special names:
zero always holds the constant value 0
s0 to s11, t0 to t6 are the “general purpose” registers, generally used to store variables
ra, a0 to a7 are used for function calls
sp, gp, fp are the stack pointer, global pointer, and frame pointer (more on this later)
o Constants (“immediate values”)
— These values are immediately available as part of the instruction (no fetching from memory
necessary)
— Use addi instruction: addi sO, s0O, 4 performsa = a + 4
* Note there is no subi instruction, but we can use addi with a negative number
— We can also initialize values using immediates, by using an addi with the zero register
* e.g. addi s4, zero, -78 initializes s4 to -78
— Use 0x prefix for a hexadecimal number, Ob for a binary number
— Immediates can only be up to 12 bit two’s complement numbers since we need to use the other 20
bits for the instruction
* The numbers are sign-extended to 32 bits
— If the numbers are bigger than 12 bits:
* Use lui, load upper immediate, followed by an addi
e lui allows specification of a 20-bit value, which is loaded into the most significant 20 bits
of the instruction and sets the rest to 0
e The addi can add in the other 12 bits
e e.g. if we want a = O0xABCDE123 we can do lui s2, OxABCDE followed by addi s2, s2,
0x123
* Alternatively we can use a pseudo-instruction 1i, load 32-bit immediate, and just do 1i s2,

EE SR



O0xABCDE123
o The assembler converts the 1i into lui and addi
¢ Pseudo-instructions make our lives easier; they are not real instructions but are converted
into real instructions by the assembler



	Lecture 22, Oct 31, 2022
	Introduction to RISC-V
	RISC-V Instructions


