
Lecture 21, Oct 27, 2022
Introduction to Assembly Language

• A human-readable form of the processor’s native language
• Many different flavours, e.g. x86, ARM, RISC-V, etc
• Assembly is translated into binary machine code by an assembler

– High-level languages are translated into assembly and then compiled into machine code
– While high level languages such as C don’t care about the underlying processor, assembly is

targeted for a specific architecture
• Each instruction specifies two things: the operation and operands

– Operands can come from registers, memory, or constants in the instruction itself
• Assembly instructions are encoded as a word and stored in memory

– In RISC-V these are 32-bit words

Introduction to Computer Organization
• Processor communicates to memory via an address bus and data bus (bidirectional or two unidirectional

buses)
• Control signals such as read and write are on another bus
• I/O devices are connected to the same data bus, control signal bus, etc
• The memory and I/O ports are each assigned a range of addresses called memory maps

– This way we can identify whether a read/write is to memory or I/O or something else
– Referred to as memory-mapped I/O
– e.g. Memory can be mapped to addresses 0x0 - 0x3FFF'FFFF, LED can be mapped to addresses

0xFF20'0000 - 0xFF20000F
* In this case an address of e.g. 0x10000000 is in memory

Memory Architecture
• Registers are small, so memory is used to store large amounts of data
• Memory can be thought of as a 2D array that you can index into

– e.g. at address 0 is word 0, at address 4 is word 1, etc
* This is because words are 4 bytes but memory is byte-addressable

• With a k bit address (k address lines or wires), we can address A = 2k bytes or 2k−2 words
– The first k − 2 bits select the “row”, or the word, and the last 2 bits select the “column”, or the

byte within the word

Notes on Lab 6
• Most non-trivial circuits are separated into 2 functions

– The datapath (where the data moves), with e.g. ALUs, registers, etc
– The control path (manipulates the signals in the datapath), with e.g. mux select signals, register

enables, etc
• Given a datapath that computes A2 + B, compute Ax2 + Bx + C

– Registers holding values for A and B; enables on the datapath
* Inputs are muxed, with both register inputs coming either from the data input or from the

ALU output
– ALU

* Inputs are muxed, allowing either A or B to go to both inputs
* 2 operations: 0 adds, 1 multiplies

– Result register for the ALU
– To do the operation, we need to first compute A2, store it somewhere, and then add B to it

1


	Lecture 21, Oct 27, 2022
	Introduction to Assembly Language
	Introduction to Computer Organization
	Memory Architecture
	Notes on Lab 6


