
Lecture 20, Oct 25, 2022
Simple Processor Continued

• Instructions:
– load Rx, Data

* Load Data into Rx, where Data comes from the external signal
* Need to enable the external signal input tri-state buffer, and enable a write to the correct

register
– move Rx, Ry

* Copies data from Ry into Rx
* Need to enable the tri-state buffer on the output of Ry, and enable a write to Rx

– add Rx, Ry
* Store Rx + Ry into Rx
* First enable the tri-state on output Rx, and enable the temporary A register for the ALU
* On the second clock cycle, enable the tri-state on output Ry, the ALU does the computation

and stores into G
* On the third clock cycle, store G into Rx

– sub Rx, Ry
* Store Rx - Ry into Ry
* Same thing as the add instruction but subtraction

• Tradeoff between instruction usability and complexity
– e.g. old processors used to have very complex instructions that compilers could not always take

advantage of
• Each instruction and register has an encoding

– 00 for load, 01 for move, 10 for add, 11 for sub
– These are referred to as “opcodes”, in this case 2-bit opcodes
– Registers are encoded as the register number (register index)
– e.g. add R1, R2 is encoded as 10, 01, 10

• When designing the processor we need to know how many steps (clock cycles) can instructions take
– The longest instruction is add/sub at 3 steps
– Therefore we need a 2-bit counter to count which step we’re currently on

* Counter with a clock, clear, and produces Q1, Q0
• Now turn those 2 bits into a 1-hot code

– 1-hot codes make the control FSM logic much easier to derive
• For the control FSM:

– Need a function register, taking in f1, f0, the opcode, 2-bit values for Rx and Ry, an input FRin

which is used to indicate when we’re loading a new instruction
– First decoder decodes the opcode into a 1-hot code for each instruction
– Second and third decoders decode the register inputs into 1-hot codes

• We then derive control signals for each step
– Ain = (I2 + I3)T1
– Gin = (I2 + I3)T2
– Gout = (I2 + I3)T3
– extern = I0T1
– Done = (I0 + I1)T1 + (I2 + I3)T3
– FRin = wT0
– Clear = Done + w̄T0

* w̄T0 means if we’re in state 0 and we aren’t starting an operation, we stay in state 0

1


	Lecture 20, Oct 25, 2022
	Simple Processor Continued


