Lecture 20, Oct 25, 2022

Simple Processor Continued

- Instructions:
 - load Rx, Data
 - * Load Data into $\mathtt{Rx},$ where \mathtt{Data} comes from the external signal
 - $\ast\,$ Need to enable the external signal input tri-state buffer, and enable a write to the correct register
 - move Rx, Ry
 - * Copies data from Ry into Rx
 - * Need to enable the tri-state buffer on the output of Ry, and enable a write to Rx
 - add Rx, Ry
 - * Store Rx + Ry into Rx
 - * First enable the tri-state on output Rx, and enable the temporary A register for the ALU
 - $\ast\,$ On the second clock cycle, enable the tri-state on output Ry, the ALU does the computation and stores into G
 - * On the third clock cycle, store $\tt G$ into $\tt Rx$
 - sub Rx, Ry
 - * Store Rx Ry into Ry
 - * Same thing as the add instruction but subtraction
- Tradeoff between instruction usability and complexity
 - e.g. old processors used to have very complex instructions that compilers could not always take advantage of
- Each instruction and register has an encoding
 - 00 for load, 01 for move, 10 for add, 11 for sub
 - These are referred to as "opcodes", in this case 2-bit opcodes
 - Registers are encoded as the register number (register index)
 - e.g. add R1, R2 is encoded as 10, 01, 10
- When designing the processor we need to know how many steps (clock cycles) can instructions take
 - The longest instruction is add/sub at 3 steps
 - Therefore we need a 2-bit counter to count which step we're currently on
 - * Counter with a clock, clear, and produces Q_1, Q_0
- Now turn those 2 bits into a 1-hot code
 - 1-hot codes make the control FSM logic much easier to derive
- For the control FSM:
 - Need a function register, taking in f_1 , f_0 , the opcode, 2-bit values for R_x and R_y , an input FR_{in} which is used to indicate when we're loading a new instruction
 - First decoder decodes the opcode into a 1-hot code for each instruction
 - Second and third decoders decode the register inputs into 1-hot codes
- We then derive control signals for each step
 - $-A_{in} = (I_2 + I_3)T_1$
 - $-G_{in} = (I_2 + I_3)T_2$
 - $G_{out} = (I_2 + I_3)T_3$
 - extern $= I_0 T_1$
 - Done = $(I_0 + I_1)T_1 + (I_2 + I_3)T_3$
 - $-\operatorname{FR}_{in} = wT_0$
 - Clear = Done + $\bar{w}T_0$

* $\bar{w}T_0$ means if we're in state 0 and we aren't starting an operation, we stay in state 0