
Lecture 18, Oct 20, 2022
Two’s Complement System

• Two’s complement is a way to represent negative numbers in binary
• Example: if we have a 4 bit number, if we add 11112 to it, this turns out to reduce its value by 1, so in

4 bits, 11112 represents −1
• Given a number k represented with n bits, −k is represented as 2n − k

– We can check for correctness by verifying that k + −k = 1 (after truncating the carry out)
– Example:

* n = 4, k = 1 =⇒ k = 00012, −k = 11112
* n = 4, k = 6 =⇒ k = 01102, −k = 10102

• Check: 01102 + 10102 = 100002 = 0 when carry out is dropped
* n = 5, k = 13 =⇒ k = 011012, −k = 100112

• Check: 011012 + 100112 = 1000002 = 0
• Shortcut: Invert all the bits and add 1

– This is because inverting all the bits is equivalent to calculating (2n − 1) − k, so adding 1 to it is
equal to 2n − k

– We can simply do this again to get from −k back to k!
• With two’s complement, the maximum value representable with n bits is reduced by half to make room

for the negative numbers
– e.g. for 4 bits we used to be able to represent up to 11112 = 15, with two’s complement we can

only go up to 01112 = 7, since 11112 will now represent -1
* However now we can represent down to 10002 = −8

• The MSB is 0 for positive numbers and 1 for negative numbers; we can use it as a sign indicator (the
sign bit)

• Sign extension: if we want to represent the same number with more bits, we simply duplicate the sign
bit into the new MSB bit positions

– Example:
* −1 represented with 4 bits is 11112, if we want to expand it to 8 bits, we duplicate the sign

bit as 111111112
* 1 represented with 4 bits is 00012, extend to 8 bits is 000000012

• Two’s complement allows us to do subtraction with the same hardware as addition – just add the
negative!

– XOR all the input bits by 1 to invert, and then utilize the carry-in to the full adder to add 1 in
order to convert the operand to its negative

Figure 1: Add/subtract ALU

1



Overflow
• If we add two numbers that are too large, we get an arithmetic overflow

– e.g. 01112 + 00012 is 7 + 1, but the sum is 10002, which in 4-bit two’s complement is −8; this is
because 8 can’t be represented in a signed 4-bit number

• When our result overflows the range of the output
• How do we detect overflow?

– Positive number plus positive number should have positive result
* Positive plus positive always has a carry out of 0
* When positive plus positive overflows, MSB (sign bit) would be 1 (since the result will have

the wrong sign)
– Negative number plus negative number should have negative result

* Negative plus negative always has a carry out of 1
* When negative plus negative overflows, sign bit would be 0

– Positive number plus negative number will never overflow
• To detect overflow, consider the MSB (sign bit) of the result and the carry-out; overflow occurs when

these have different values
– o = s3 ⊕ cout

2


	Lecture 18, Oct 20, 2022
	Two’s Complement System
	Overflow


