Lecture 18, Oct 20, 2022

Two's Complement System

- Two's complement is a way to represent negative numbers in binary
- Example: if we have a 4 bit number, if we add 1111_2 to it, this turns out to reduce its value by 1, so in 4 bits, 1111_2 represents -1
- Given a number k represented with n bits, -k is represented as $2^n k$
 - We can check for correctness by verifying that k + -k = 1 (after truncating the carry out) - Example:
 - * $n = 4, k = 1 \implies k = 0001_2, -k = 1111_2$
 - * $n = 4, k = 6 \implies k = 0110_2, -k = 1010_2$
 - Check: $0110_2 + 1010_2 = 10000_2 = 0$ when carry out is dropped
 - * $n = 5, k = 13 \implies k = 01101_2, -k = 10011_2$
 - Check: $01101_2 + 10011_2 = 100000_2 = 0$
- Shortcut: Invert all the bits and add 1
 - This is because inverting all the bits is equivalent to calculating $(2^n 1) k$, so adding 1 to it is equal to $2^n k$
 - We can simply do this again to get from -k back to k!
- With two's complement, the maximum value representable with n bits is reduced by half to make room for the negative numbers
 - e.g. for 4 bits we used to be able to represent up to $1111_2 = 15$, with two's complement we can only go up to $0111_2 = 7$, since 1111_2 will now represent -1
 - * However now we can represent down to $1000_2 = -8$
- The MSB is 0 for positive numbers and 1 for negative numbers; we can use it as a sign indicator (the sign bit)
- Sign extension: if we want to represent the same number with more bits, we simply duplicate the sign bit into the new MSB bit positions
 - Example:
 - $^*~-1$ represented with 4 bits is $1111_2,$ if we want to expand it to 8 bits, we duplicate the sign bit as 1111111_2
 - * 1 represented with 4 bits is 0001_2 , extend to 8 bits is 0000001_2
- Two's complement allows us to do subtraction with the same hardware as addition just add the negative!
 - XOR all the input bits by 1 to invert, and then utilize the carry-in to the full adder to add 1 in order to convert the operand to its negative

Figure 1: Add/subtract ALU

Overflow

- If we add two numbers that are too large, we get an arithmetic overflow
 - e.g. $0111_2 + 0001_2$ is 7 + 1, but the sum is 1000_2 , which in 4-bit two's complement is -8; this is because 8 can't be represented in a signed 4-bit number
- When our result overflows the range of the output
- How do we detect overflow?
 - Positive number plus positive number should have positive result
 - * Positive plus positive always has a carry out of 0
 - * When positive plus positive overflows, MSB (sign bit) would be 1 (since the result will have the wrong sign)
 - Negative number plus negative number should have negative result
 - * Negative plus negative always has a carry out of 1
 - $\,\,*\,$ When negative plus negative overflows, sign bit would be 0
 - Positive number plus negative number will never overflow
- To detect overflow, consider the MSB (sign bit) of the result and the carry-out; overflow occurs when these have different values

 $- o = s_3 \oplus c_{out}$