
Lecture 16, Oct 17, 2022
Alternative Design for Example FSM

• State machine designs are not unique

Figure 1: State diagram for the example problem

• From this state diagram we can make a state table:

State Next w = 0 Next w = 1 z

A A B 0
B C B 0
C A D 0
D C B 1

• Instead of using 2 flip flops we can use 4 flip flops y4y3y2y1
– Assign state codes as A = 0001, B = 0010, C = 0100, D = 1000
– This is a one-hot encoding, where for each state there is only 1 bit that’s 1

• State-assigned table:

y4y4y2y1 Y4Y3Y2Y1 for w = 0 Y4Y3Y2Y1 for w = 1 z

0001 0001 0010 0
0010 0100 0010 0
0100 0001 1000 0
1000 0100 0010 1

• We can synthesize the circuit simply by inspecting the state diagram
– Y4 is 1 in state D; transition to state D is from state C with w = 1, so Y4 = y3w
– Similar for Y3: transitions are from state D with w = 0 and from state B with w = 0 so

Y3 = (y4 + y2)w̄
– For Y2: transitions are from A with w = 1, B with w = 1, D with w = 1 so Y2 = (y1 + y2 + y4)w
– For Y1: transitions are from A with w = 0, C with w = 0 so Y1 = (y1 + y3)w̄
– Finally Z = y4

• This different circuit will produce the same behaviour as the one from the previous lecture
• We can do another alternative design in which each state represents the last 3 values of w

– This simply produces a 3-bit shift register with a comparator
– A shift register consists of flip-flops chained together

1



Verilog Code for Example FSM
• All we need to do in Verilog is to specify the state table (using a case statement)
• Separate the code into 3 sections:

1. Flip-flops (reset + update to new value)
2. State table
3. Output

module fsm(input logic w, clock, resetn,
output logic z);

// Define states
typedef enum logic [1:0] (A, B, C, D) statetype;
statetype ps, ns;
// 1. Flip flops
always_ff @(posedge clock, negedge resetn)

if (!resetn)
// Make present state A on reset
ps <= A;

else
// Otherwise, make the present state take the next state's value
ps <= ns;

// 2. State table
always_comb

// Determine next state from the present state
case (ps)

A: ns = w ? B : A;
B: ns = w ? B : C;
C: ns = w ? D : A;
D: ns = w ? B : C;

endcase
// 3. Assign output
assign z = (ps == D);

endmodule

• enum defines an enumeration, which makes the compiler encode the state for us
– The type after enum is the underlying type, in this case a 2-bit logic value
– The symbols in brackets after are the possible values for the enum; in this case we can refer to the

states now as A, B, C, D
– By default, these are in numerical order, but the compiler sees this only as a suggestion (if it can

optimize by changing the encodings, then it will do so)
• typedef <type> <name> defines a type alias, in this case statetype for the enum type

2


	Lecture 16, Oct 17, 2022
	Alternative Design for Example FSM
	Verilog Code for Example FSM


