## Lecture 15, Oct 13, 2022

## **Clock Dividers (Prescalers)**

• How do we generate a different clock frequency from what's given?



Figure 1: Clock division by 2

- Example: Given a 100MHz clock, derive a circuit using D-flip flops to generate 50MHz and 25MHz clocks
  - The 50MHz clock can be made by tying the input clock into the clock of a T-flip flop
  - The 25MHz clock can be made by putting the 50MHz clock into the clock of a T-flip flop
  - This method is restricted to clock divisions by powers of two
- More generally we can use a counter in order to divide by any factor
  - A NOR gate over all the counter bits can be used as a comparator to check for 0
  - The comparator output can be ANDed together with some signal so the signal only passes through when the counter reaches the desired value

## Finite State Machines (FSM)

- Any sequential circuit can be modelled by some set of inputs  $w_i \rightarrow \text{combinational circuit } A \rightarrow \text{set of flip}$ flops  $\rightarrow \text{combinational circuit } B \rightarrow \text{output}$
- A finite state machine is so named because a circuit with k registers (flip flops) can only be in one of a finite number of states  $(2^k \text{ states})$

## Example FSM

- Motor outputs its status on w
- If status is ok, the FSM should maintain z = 0
- If motor outputs a sequence of 1, 0, 1 then an error is occurred, so the FSM should output z = 1
- z is determined by the history of w
- First we need a state diagram:
- From this state diagram we can make a state table:

| State | Next $w = 0$ | Next $w = 1$ | z |
|-------|--------------|--------------|---|
| A     | Α            | В            | 0 |
| B     | C            | B            | 0 |
| C     | A            | D            | 0 |
| D     | C            | В            | 1 |

- Now we need to assign states
  - There are 4 states, so we need 2 flip-flops  $y_2, y_1$



Figure 2: State diagram for the example problem

- Choose state codes: A = 00, B = 01, C = 10, D = 11Now make the state-assigned table:

| Now | make | the | state-assigned | table: |
|-----|------|-----|----------------|--------|
|     |      |     |                |        |

| $y_2y_1$ | $Y_2 Y_1$ for $w = 0$ | $Y_2 Y_1$ for $w = 1$ | z |
|----------|-----------------------|-----------------------|---|
| 00       | 00                    | 01                    | 0 |
| 01       | 10                    | 01                    | 0 |
| 10       | 00                    | 11                    | 0 |
| 11       | 10                    | 01                    | 1 |

• Now we basically have a truth table, we can synthesize the circuit:

$$-Y_1 = w$$

–  $Y_2 = \bar{w}y_1 + wy_2\bar{y}_1$  (can be found through a 3-variable K-map with  $w, y_1, y_2$ ) –  $z = y_2y_1$