Lecture 14, Oct 11, 2022

D-Flip Flop With Reset in Verilog

endmodule

- negedge resetn is added to the sensitivity list because it directly affects Q
 - Whenever there's a negative edge on resetn, Q is reset regardless of clock state

Multi-Bit Register With Reset

endmodule

- We can also add an enable to determine whether data is loaded on a clock edge
 - This can be done via a mux that passes a new D when enable is true and otherwise cycles Q back into D
 - We don't just add an AND gate onto the clock because generally in a modern high speed circuit we don't want to add additional gates onto the clock, since that introduces delays that cause timing issues

Figure 1: D-flip flop with enable

Counters

Cycle	$Q_2 Q_1 Q_0$
0	000
1	001
2	010
3	011
4	100
5	101

Cycle	$Q_2Q_1Q_0$
6	110
7	111
8	000

- Circuits that count up or down every clock cycle
- Can we find a pattern in the bits?
 - Q_0 , the LSB, toggles every clock cycle, so $Q_0(t+1) = Q_0 \oplus 1$
 - Q_1 toggles only in the cycle after Q_0 is 1, so $Q_1(t+1) = Q_1 \oplus Q_0$
 - Q_2 toggles only when both Q_0 and Q_1 are 1, so $Q_2(t+1) = Q_2 \oplus (Q_0Q_1)$
- A T-flip flop toggles its value on each clock cycle if T is 1; it's made by cycling the output of a D-flip flop back into the input with an XOR with T

Figure 2: T-flip flop implemented with a D-flip flop

Figure 3: T-flip flop symbol

- Note we should add a reset for all the flip-flops because when the circuit powers on, there is no guarantee that they will initialize to 0
- This called a synchronous counter because all the clocks are the synchronized together
- Instead of a fixed 1 being fed into the first flip flop we can also use an enable input, so when enable is 0 the counter won't count up
- Instead of resetting all the flip flops we might also want to load a preset value into all of them; this is called a parallel load

Figure 4: 3-bit synchronous up-counter implemented with T-flip flops