
Lecture 1, Sep 8, 2022
• General purpose processors can be too slow for some applications because of overhead

– Specialized hardware is used for e.g. WiFi
• Hardware is faster & more efficient
• Writing software involves many layers of abstraction

– Code -> hardware adder -> logic gates -> transistor -> silicon
– Makes it easier since it hides things we don’t need to worry about

• Abstraction vs Complexity: need to manage complexity, find the right level of abstraction to succeed in
labs

• Transistors: acting like a switch
S

G

D

– When voltage on the gate is high, the drain and source are connected
– Made of silicon chips, L is the length of the gate (current state of the art L = 14nm)
– Transistors in chips are getting smaller and more powerful following Moore’s Law

Why Build Hardware?
• Hardware is faster, but harder to produce and apply, and more expensive
• Why is hardware faster than software? Things get in the way with software:

– Retrieval of instructions, operands, etc from memory
– Write results back into memory
– Keeps asking for the next computation

• Hardware is tailored to a specific purpose, so it doesn’t have to ask what to do
• If not fast enough (throughput: things that can be done per unit time), just build more hardware!
• Hardware speed is bottlenecked by speed of electrical signal, wire resistance, capacitance, etc

When to Build Hardware?
• Software is easier to build, test, and manufacture
• Build hardware when software is simply too slow

Assembly Language
• High level languages are machine agnostic (doesn’t care about the specific processor)

– The compiler compiles this down to assembly
• Assembly language is a low level, machine specific language that is still human readable
• An assembler converts this to a native binary executable, which only runs on the specific architecture it

was compiled/assembled for
• Assembly is typically only used in special circumstances:

– Where high speed behaviour down to the instruction is needed
– Where low level access to hardware is needed, e.g. device drivers

• ASM is a lot closer to hardware and is a stepping stone to learn computer architecture
• RISC-V: Reduced Instruction Set Computer, RISC-V is an open source ISA (instruction set architecture)

1


	Lecture 1, Sep 8, 2022
	Why Build Hardware?
	When to Build Hardware?
	Assembly Language


