
Lecture 1, Sep 8, 2022
• General purpose processors can be too slow for some applications because of overhead

– Specialized hardware is used for e.g. WiFi
• Hardware is faster & more efficient
• Writing software involves many layers of abstraction

– Code -> hardware adder -> logic gates -> transistor -> silicon
– Makes it easier since it hides things we don’t need to worry about

• Abstraction vs Complexity: need to manage complexity, find the right level of abstraction to succeed in
labs

• Transistors: acting like a switch
S

G

D

– When voltage on the gate is high, the drain and source are connected
– Made of silicon chips, L is the length of the gate (current state of the art L = 14nm)
– Transistors in chips are getting smaller and more powerful following Moore’s Law

Why Build Hardware?
• Hardware is faster, but harder to produce and apply, and more expensive
• Why is hardware faster than software? Things get in the way with software:

– Retrieval of instructions, operands, etc from memory
– Write results back into memory
– Keeps asking for the next computation

• Hardware is tailored to a specific purpose, so it doesn’t have to ask what to do
• If not fast enough (throughput: things that can be done per unit time), just build more hardware!
• Hardware speed is bottlenecked by speed of electrical signal, wire resistance, capacitance, etc

When to Build Hardware?
• Software is easier to build, test, and manufacture
• Build hardware when software is simply too slow

Assembly Language
• High level languages are machine agnostic (doesn’t care about the specific processor)

– The compiler compiles this down to assembly
• Assembly language is a low level, machine specific language that is still human readable
• An assembler converts this to a native binary executable, which only runs on the specific architecture it

was compiled/assembled for
• Assembly is typically only used in special circumstances:

– Where high speed behaviour down to the instruction is needed
– Where low level access to hardware is needed, e.g. device drivers

• ASM is a lot closer to hardware and is a stepping stone to learn computer architecture
• RISC-V: Reduced Instruction Set Computer, RISC-V is an open source ISA (instruction set architecture)

Lecture 2, Sep 12, 2022
Number Systems

• Different bases exist:
– Decimal (base 10)

1

– Binary (base 2)
* Commonly prefixed with 0b

– Hexadecimal (base 16)
* Commonly prefixed with 0x or 0h
* Each hex digit corresponds to 4 binary digits, allowing a more compact way to write it down

Lecture 3, Sep 13, 2022
Logic Circuits

• Transistors can be used as switches
– Controlled by input x, either connects or disconnects A and B
– L(x) = x

• Two transistors in series forms an AND gate: L(x1, x2) = x1 · x2, or L(x1, x2) = x1x2
• Two transistors in parallel forms an OR gate: L(x1, x2) = x1 + x2
• A transistor shorting to ground forms a NOT gate: L(x) = x̄, or L(x) = x′

– Also referred to the complement of x

Logic Gates
• Using transistors is tedious, so we can represent each of these with gates:

– The NOT gate:

– The AND gate:

– The OR gate:

• Sometimes NOT gates are simplified to just a bubble before the input to a gate
• Example: S = ab̄ + āb

Truth Tables

x1 x2 AND
0 0 0
0 1 0
1 0 0
1 1 1

x1 x2 OR
0 0 0
0 1 1
1 0 1
1 1 1

• Note AND and OR gates can be extended to an arbitrary number of inputs

2

Other Gates
• The XOR gate, output is 1 if two inputs are different:

– L = x̄y + xȳ
* When extended to an arbitrary number of inputs, its output is 1 if there are an odd number

of 1 inputs
• The NAND gate, output is 0 if both inputs are 1 (i.e. AND + NOT):

– L = (xy)
* An AND gate takes 6 transistors, but a NAND gate takes 4 transistors, so this is cheaper to

build
* NAND gates are functionally complete, i.e. you can build any gate with them

• The NOR gate, output is zero if at least one input is 1:

– L = (x + y)
* NOR gates are also functionally complete

Lecture 4, Sep 15, 2022
Logic Expressions: Sum of Products and Products of Sums

• Terminology:
– Literal: any variable or its complement, e.g. x, y, x̄
– Product term: an AND operation (since AND is denoted with ·)
– Sum term: an OR operation (since OR is denoted with +)

• SOP and POS are a way to convert any arbitrary truth table to a logic expression

Sum of Products

Definition

Sum of products: An expression written as an OR operation of AND operations, e.g. xy + x̄ȳ

• Minterm: A product term that evaluates to 1 for exactly one row of a truth table
– Given a truth table, the min term is formed by including xi if xi = 1, or x̄i if xi = 0

• SOP specifies the truth table based on its ones
• Canonical SOP (Sum-of-Products): SOP expression for a function that comprises its minterms

– Canonical SOPs are not simplified
• Example:

x y z minterm
0 0 0 x̄ȳz̄
0 0 1 x̄ȳz
0 1 0 x̄yz̄
0 1 1 x̄yz
1 0 0 xȳz̄
1 0 1 xȳz
1 1 0 xyz̄
1 1 1 xyz

3

• Example: function comprised of minterms f(x, y, z) =
∑

m(0, 1, 2, 3, 6, 7)
– Canonical SOP: f(x, y, z) = x̄ȳz̄ + x̄ȳz + x̄yz̄ + x̄yz + xyz̄ + xyz

Product of Sums
Definition

Product of sums: An expression written as an AND operation of OR operations

• Maxterm: A sum term that evaluates to 0 for exactly one row of a truth table
– Given a truth table, include xi if xi = 0 in that row, else include x̄i

• POS specifies the truth table based on its zeroes
• Canonical POS: POS expression for a function that comprises its maxterms
• Example:

x y z maxterm
0 0 0 x + y + z
0 0 1 x + y + z̄
0 1 0 x + ȳ + z
0 1 1 x + ȳ + z̄
1 0 0 x̄ + y + z
1 0 1 x̄ + y + z̄
1 1 0 x̄ + ȳ + z
1 1 1 x̄ + ȳ + z̄

• Example: f(x, y, z) =
∑

m(0, 1, 6, 7) =
∏

M(2, 3, 4, 5)
– Canonical POS: f(x, y, z) = (x + ȳ + z)(x + ȳ + z̄)(x̄ + y + z)(x̄ + y + z̄)

• For any truth table, we can use its 1s to derive the SOP, or the 0s to derive the POS
• Example:

x y f
0 0 0
0 1 1
1 0 1
1 1 1

• Equivalent representations:
– POS: f = (x + y)
– SOP: f = x̄y + xȳ + xy

• Generally if you have fewer 0s, use POS, if you have fewer 1s, use SOP

Lecture 5, Sep 19, 2022
Boolean Algebra Basics

• Canonical SOP and POS representations can be large and inefficient; boolean algebra lets us simplify
and optimize them

• Axioms of Boolean Algebra:
1. 0 · 0 = 0
2. 1 · 1 = 1
3. 0 · 1 = 1 · 0 = 0

4

4. x = 0 =⇒ x̄ = 1
• Duality: given a logic expression, swapping all 0 with 1 and · with + leaves the expression still valid;

this gives every axiom a dual form:
1. 1 + 1 = 1
2. 0 + 0 = 0
3. 1 + 0 = 0 + 1 = 1
4. x = 1 =⇒ x̄ = 0

• Derived rules: (∀x:)
5. x · 0 = 0, dual: x + 1 = 1
6. x · 1 = x, dual: x + 0 = x
7. x · x = x, dual: x + x = x
8. x · x̄ = 0, dual: x + x̄ = 1
9. ¯̄x = x

• Derived identities: (∀x, y, z:)
10. Commutativity: x · y = y · x, dual: x + y = y + x
11. Associativity: x(yz) = (xy)z, dual: x + (y + z) = (x + y) + z
12. Distributivity: x(y + z) = xy + xz, dual: x + (yz) = (x + y)(x + z)
13. Absorption: x + xy = x, dual: x(x + y) = x
14. Combination: xy + xȳ = x, dual: (x + y)(x + ȳ) = x
15. DeMorgan’s Theorem: xy = x̄ + ȳ, dual: (x + y) = x̄ȳ

– Proof: xy = x̄ȳ + x̄y + xȳ Canonical SOP
= x̄ȳ + x̄y + x̄ȳ + xȳ Rule 7
= x̄ + ȳ Combination

16. x + x̄y = x + y, dual: x(x̄ + y) = xy

Proof by Perfect Induction
• Proving a statement by enumerating all the possible cases
• Example: proving x + (yz) = (x + y)(x + z)

x y z yz x + (yz) x + y x + z (x + y)(x + z)
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1
1 0 1 0 1 1 1 1
1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1

Lecture 6, Sep 20, 2022
Functional Completeness of NAND and NOR

• DeMorgan’s theorem allows us to implement any SOP circuit can be implemented using only NAND
gates:

– Example: f = x1x2 + x2x3

= (x1x2) + (x2x3)
= x1x2 · x2x3

– For a POS circuit, convert to SOP first
• Any POS circuit can be implemented using NOR gates:

5

– Example: f = (x1 + x2)(x2 + x3)

= x1 + x2 · x2 + x3

= x1 + x2 + x2 + x3
– Likely, for a SOP circuit, convert to POS first

Example
• Gumball factory
• s2 normally 0, but 1 if gumball is too large
• s1 normally 0, but 1 if too small
• s0 normally 0, but 1 if too light
• Desired behaviour: f = 1 when gumball is either (too large) or (too small and too light)

– By inspection, f = s2 + s1s0
• Truth table:

s2s1s0 f

000 0
001 0
010 0
011 1
100 1
101 1
110 1
111 1

• Minterms are the last 5 rows:
– f = s̄1s1s0 + s2s̄1s̄0 + s2s̄1s0 + s2s1s̄0 + s2s1s0

• Simplify: f = s̄1s1s0 + s2s̄1s̄0 + s2s̄1s0 + s2s1s̄0 + s2s1s0

= s1s0(s̄2 + s2) + s2s̄1(s0 + s̄0) + s2s̄0(s̄1 + s0) Rule 7 + Distributivity
= s1s0 + s2s̄1 + s2s̄0 Combination
= s1s0 + s2(s̄1 + s̄0) Distributivity
= s1s0 + s2s1s0 DeMorgan’s Theorem
= s1s0 + s2 Rule 16

Example 2
• Derive a minimal POS expression for f(x1, x2, x3) =

∏
M(0, 2, 4)

x1x2x3 f f̄

000 0 1
001 1 0
010 0 1
011 1 0
100 0 1
101 1 0
110 1 0
111 1 0

• f = (x1 + x2 + x3)(x1x̄2 + x3)(x̄1 + x2 + x3)
= (x1 + x3)(x2 + x3) Combination (dual)

6

• Using the min terms of f̄ :
– f̄ = x̄1x̄2x̄3 + x̄1x2x̄3 + x1x̄2x̄3

= x̄1x̄3 + x̄2x̄3

– Using DeMorgan’s rule: f = ¯̄f = x̄1x̄3 + x̄2x̄3 = x̄1x̄2 · x̄2x̄3 = (x1 + x2)(x2 + x3)

Lecture 7, Sep 22, 2022
SystemVerilog HDL

• SystemVerilog is a hardware description language that allows the specification of logic functions using
high level abstractions

• Modules are blocks of hardware with inputs and outputs
• Example:

module basic_logic(input logic a, b, // logic: type - indicates boolean variables
output logic w, x, y, z);

// All these things happen at the same time -- not sequentially
// assign: describes combinational logic
assign w = a & b; // bitwise AND
assign x = a | b; // bitwise OR
assign y = ~a; // bitwise NOT
assign z = a ˆ b; // bitwise OR

endmodule

• Modules are not functions – they cannot call themselves

Multiplexers (Mux)

Figure 1: 2 to 1 multiplexer symbol

• A circuit that has an output f , controlled by either of two inputs x, y, based on an input s
– If s is 0, then f is controlled by x, else y

• Truth table:

sxy f

000 0
001 0
010 1
011 1
100 0
101 1

7

sxy f

110 0
111 1

• Verilog:

module mux2to1(input logic x, y, s,
output logic f);

assign f = (~s & x) | (s & y);
endmodule

• Muxes can be extended to multiple inputs, and also multi-bit signals (buses)
– A slash with a number is drawn on a wire to indicate that it is a bus

• Example: 2-bit mux
– x and y are now 2-bit buses
– Implemented with 2 muxes

module mux2to1_2bit(input logic [1:0] x, y, // The [1:0] indicates a 2-bit bus
input logic s,
output logic [1:0] f);

// Note we cannot use a single assign statement
// since s is a scalar, x is a vector, so s & x would be a mismatch
assign f[1] = (~s & x[1]) | (s & y[1]);
assign f[0] = (~s & x[0]) | (s & y[0]);

endmodule

Adders
• Half adder: adding two one-bit numbers

– Max result can be 2, so output from the half adder is 2 bits s1, s0
• s1 = ab, s2 = a ⊕ b where ⊕ is the XOR operator

module ha(input logic a, b,
output logic [1:0] s);

assign s[1] = a & b;
assign s[0] = a ˆ b;

endmodule

• Full adder: includes a carry input
– Adding multiple bits involves inputs ai, bi and also a carry ci

– Each column (except for the rightmost bit) adds 3 bits (2 inputs plus a carry)
– Leftmost column produces a cout

ci ai bi ci+1 si

000 0 0
001 0 1
010 0 1
011 1 0
100 0 1
101 1 0
110 1 0
111 1 1

• ci+1 = ciai + cibi + aibi (carry is 1 if at least 2 inputs are 1, aka a majority function), si = ai ⊕ bi ⊕ ci

8

– si is a three-input XOR, equivalent to (ai ⊕ bi) ⊕ ci, which produces 1 if an odd number of inputs
is 1 (aka an odd function)

• The carry-out of each full adder is connected to the carry-in of the next bit (known as a ripple carry
adder)

• Verilog:

// Single bit full adder module
module fa(input logic a, b, cin,

output logic s, cout);
assign s = a ˆ b ˆ cin;
assign cout = (cin & a) | (cin & b) | (a & b);

endmodule

Lecture 8, Sep 26, 2022
Hierarchical Verilog

• Top-level module that is composed of simpler modules
• Makes code easier to read and reproduce
• Example: using full adder module to build adder for 2 3-bit inputs

module adder3(input logic [2:0] A, B,
input logic cin,
output logic [2:0] S,
output logic cout);

logic c1, c2;
// Add first bits with carry in
fa u0(A[0], B[0], cin, S[0], c1);
// Add second bit and third bit
fa u1(A[1], B[1], c1, S[1], c2);
fa u2(A[2], B[2], c2, S[2], cout);

endmodule

• 3 instances of the full adder are needed, each needs a unique name

Example

• Example 2: a circuit that displays a sum R on a 7-segment display where R is either a + b or c + d
– Truth table for a 7-segment decoder (note a segment lights up when it is 0):

x1 x0 h0 h1 h2 h3 h4 h5 h6 h7

00 0000001
01 1001111
10 0010010
11 0000110

• Logic expressions for each column:
– h0 = x̄1x0
– h1 = 0
– h2 = x1x̄0
– h3 = x̄1x0
– h4 = x0
– h5 = x1 + x0
– h6 = x̄1

• Verilog:

9

module seg7(input logic [1:0] x,
output logic [6:0] h);

assign h[0] = ~x[1] & x[0];
// 1 represents number of bits, b indicates binary
// d for decimal, h for hex
assign h[1] = 1'b0;
assign h[2] = x[1] & ~x[0];
assign h[3] = ~x[1] & x[0];
assign h[4] = x[0];
assign h[5] = x[1] | x[0];
assign h[6] = ~x[1];

endmodule

• Need a 2-bit 2-to-1 mux switching between a, b or c, d, with the output fed to a half adder, and then to
a 7-segment decoder

module hier(input logic [4:0] SW,
output logic [6:0] HEX0);

logic [1:0] F, R;
mux2to1_2bit(SW[1:0], SW[3:2], SW[4], F);
ha u2(F[1], F[0], R);
seg7 u3(R, HEX0);

endmodule

Lecture 9, Sep 27, 2022
Additional Verilog Statements

• always block
– Statements in an always block execute sequentially
– In an always block, we don’t use assign
– = (as opposed to assign) is a blocking assignment; must be used inside always blocks and enforces

sequential execution order
• Conditionals such as if/else/else if must exist in an always block

– if without else generates a latch

module mux(input logic x1, x2, s,
output logic f);

always_comb // comb for combinational logic
begin // Enclose multiple statements, akin to {}

if (s == 0)
f = x1; // assign is not used

else
f = x2;

end
endmodule

• case statements
– Can be used to do pattern matching
– Instead of deriving a logic expression, we can let Verilog do it for us
– Also needs to be inside an always block
– default catches unspecified cases; without this the compiler will generate latches (more on this

later)

module seg7(input logic [3:0] sw,
output logic [6:0] h);

10

always_comb
begin

case (sw)
0: HEX0 = 7'b1000000;
1: HEX0 = 7'b1111001;
// ...
9: HEX0 = 7'b0000100;
// Catch cases that have not been specified, since sw can go up to 15
default: HEX0 = 7'b1111111;

endcase
end

endmodule

Karnaugh Maps (K-Maps)
• A method of optimizing logic expressions
• The point of logic simplification is to reduce the cost (area) of a circuit; for our purposes, our metric for

cost is the number of gates and inputs
– cost = # of gates + # of inputs

• Optimization using boolean algebra is awkward and error prone
– When optimizing using boolean algebra, we need to combine terms, but seeing that those combina-

tions are possible is challenging
• Karnaugh Maps are a type of truth table in which minterms that cam be combined are adjacent
• Example: 2-variable K-Map

x2

x1 0 1

0 m0 m2
1 m1 m3

• Looking at the first column, f = m0 + m1 = x̄1x̄2 + x̄1x2 = x̄1
– The second row: f2 = m1 + m2 = x̄1x2 + x1x2 = x2

• Example: f(x1, x2) =
∑

m(0, 1, 3)
– f = x̄1x̄2 + x̄1x2 + x1x̄2

* As it is the circuit has a cost of 17 (3 AND, 1 3-input OR, 2 NOT + 2 inputs per AND, 3
inputs per OR, 1 input per NOT)

– K-Map:

x2

x1 0 1

0 1 0
1 1 1

• This lets us simplify our circuit to f = x̄1 + x2 which only has a cost of 5
• To simplify using a K-Map, we group adjacent minterms in the map

– The second row shows that regardless of x1, as long as x2 is 1, the expression is 1, so that row
simplifies to x2

– The first column shows that regardless of x2, as long as x1 is 0, the expression is 1, so the row
simplifies to x̄1

• We can only group terms in group sizes of powers of 2 (for a 2 × 2 K-Map, we can group 2 terms or 4
terms)

11

Lecture 10, Sep 29, 2022
3-Variable K-Maps

x3

x1x2 00 01 11 10

0 m0 m2 m6 m4
1 m1 m3 m7 m5

• Group sizes are 1, 2, 4, 8
• Note the inputs are not enumerated in ascending order

– This is a grey code, a sequence of bits where when transitioning between consecutive terms, only 1
bit changes

– This ensures that adjacent entries in the table only differ by 1 input bit
• The way the table is arranged shouldn’t matter for the final result, as long as minterms are mapped

properly
• Example: f =

∑
m(3, 7) = x̄1x2x3 + x1x2x3 = x2x3(x̄1 + x1) = x2x3

– In the K-Map these terms are adjacent, in the two where x3 and x2 are 1, and the value of x1
does not matter, so this gives us x2x3 both non-inverted and no x1

• Example: minterms m2, m6, m3, m7 simplifies to x2
– Notice that a product term that covers more adjacent cells is cheaper!

• The K-Map also wraps around, e.g. we can combine m0, m4 to x̄2x̄3

Terminology
• Implicant: for a function f , an implicant is any product term covered/included by f

– Can be a simplified or unsimplified term
• Prime Implicant: an implicant for which it is impossible to remove any literal and still have a valid

implicant
• Cover: any set of implicants that includes all minterms of a function (every 1 in a K-Map needs to be

covered)
• Example: f(x1, x2, x3) =

∑
m(1, 4, 5, 6)

– Prime implicants are x1x̄3, x1x̄2, x̄2x3
– Minimal cost cover is x1x̄3 + x̄2x3 (notice x1x̄2 is not included)

x3

x1x2 00 01 11 10

0 0 0 1 1
1 1 0 0 1

• An essential prime implicant is a prime implicant that covers at least one minterm that is not covered
by any other prime implicant

– In the last example x1x̄2 is not an essential prime implicant
• A minimal cost cover includes all essential prime implicants

4-Variable K-Maps

x3x4

x1x2 00 01 11 10

00 m0 m4 m12 m8

12

x3x4

x1x2 00 01 11 10

01 m1 m5 m13 m9
11 m3 m7 m15 m11
10 m2 m6 m14 m10

• Group sizes are 1, 2, 4, 8, 16
• Example: f(x1, x2, x3, x4) =

∑
m(2, 4, 5, 8, 10, 11, 12, 13, 15)

x3x4

x1x2 00 01 11 10

00 0 1 1 1
01 0 1 1 0
11 0 0 1 1
10 1 0 0 1

• Prime implicants: x2x̄3, x1x̄3x̄4, x1x2x4, x1x3x4, x1x̄2x3, x̄2x3x̄4, x1x̄2x̄4
– Note minterms 12 and 13 don’t form a PI since it’s completely inside the PI for minterms 4, 5, 12,

13
• Essential PIs: x2x̄3, x̄2x3x̄4

• Minimal cost cover: f = x2x̄3 + x̄2x3x̄4 + x2x3x4 +
{

x1x̄3x̄4

x2x̄3x̄4
– This shows that there can be multiple minimal cost covers

Lecture 11, Oct 3, 2022
Procedure for a Minimum Cost Cover

1. Find prime implicants
2. Identify prime implicants and include in the cover
3. Choose other PIs as needed until we cover all the 1s:

• Do this using the largest power of two size grouping of only 1s
• Use fewest circles to cover all the 1s
• 1s can be circled multiple times if this allows fewer/larger circles to be used
• Remember circles can wrap around the edges!
• Note instead of circling 1s (minterms) for a SOP expression, we can also circle 0s (maxterms) for

a POS expression

Don’t Cares
• Sometimes we know specific inputs won’t occur, or we don’t care about what happens on an input

combination
– e.g. for a 7-segment display decoder if we only want to go from 0 to 9, we don’t care when input is

1010 or higher
• Each don’t care (d) term can independently be 0 or 1
• In a K-Map we put a d; we can either include it or exclude it, depending on which lets us use fewer/larger

circles

Sequential Circuits
• As opposed to combinational circuits (outputs only determined by present inputs), sequential circuits’

outputs depend on previous inputs/states as well

13

• The simplest way to do storage is with 2 inverters in sequence, with the final output feeding back into
the input

– Once the input is high, the 2 inverters store that high input and feed it back through, so that the
output stays high

– However this is missing a way to reset the storage state

RS Latch

Figure 2: NOR gate RS latch

• Another way is to use 2 NOR gates
– (Assume S = 0 at the start)
– Reset Q to 0 by setting R = 1

* When R = 1 it doesn’t matter what the lower input to the NOR gate is, the output will
always be a 0

* Setting R = 0 again changes nothing, since the bottom NOR gate’s output 1 drives the top
NOR gate to output 0

– Set S to 1, then the bottom NOR gate will always output 0, which makes Q a 1 (assuming R = 0)
– Set S to 0 doesn’t change Q, since the previous Q of 1 is still driving the output of the bottom

NOR gate to 0
• R stands for reset, S stands for set
• This is built with what’s known as cross-coupled NOR gates

Lecture 12, Oct 4, 2022
More on RS Latches

• Flaw with this design: it cannot support both set and reset going to high/low at the same time (this
can cause the circuit to oscillate)

Characteristic Tables
• For sequential circuits, instead of truth tables we use characteristic tables

S R Q Q̄ Comment
0 0 0/1 1/0 (stored value)
0 1 0 1
1 0 1 0
1 1 0 0 (not used in practice)

14

Figure 3: RS latch timing diagram

Figure 4: NOR Gated RS latch schematic

15

Gated RS Latch

E S R Q(t + 1)
0 x x Q(t)
1 0 0 Q(t)
1 0 1 0
1 1 0 1
1 1 1 Not Useful

• When the clock is 0, S′ = R′ = 0 (none of the inputs pass through) so the stored value can’t be changed
– In a digital circuit the clock is typically a square wave generated by a crystal oscillator

• (Gated) RS latches can also be built out of NAND gates
– We can obtain this by using DeMorgan’s rule to convert an OR gate with both inputs inverted to

a NAND gate

Figure 5: NAND Gated RS latch

Gated D Latch

Figure 6: Gated D latch

• However S and R can still be 1; we don’t want this, because this is not useful, and when they both
drop to 0 from 1 the circuit oscillates

• We can let S = D, R = D̄, so that we can’t have S and R both be 1 at the same time

• This is represented with the symbol
• D is the “data” input – when clock is 1, Q = D; when clock is 0, Q stores the last value of D
• This is known as a level-sensitive latch: the output Q is sensitive to the level of the clock (as opposed

to edge sensitive latches that operate at the transition)

• This can also be represented using a mux

16

Figure 7: Gated D latch timing diagram

Figure 8: Gated D latch using a mux

A B f(t + 1)
0 x f(t)
1 0 0
1 1 1

Flip-Flops

Figure 9: D Flip-Flop

• Another type of storage element
• Consider 2 gated D-latches in series, with Q leading to D of the next latch; the clock to the first latch

is inverted and tied together with the second latch’s clock
• This is known as a D Flip-Flop
• The triangle means that the circuit responds to the edge rather than the level of the clock
• Operation: Let D be the input signal to the first latch, Qm be the output of the first latch (which is

fed to the second latch), and Q be the final output of the second latch
– Case 1: Clock = 0

* First gated D-latch has clock 1, so middle signal Qm tracks D, the input signal
* Final output Q could be either 0 or 1 based on the previous stored value (since its clock is 0)

– Case 2: Clock goes from 0 to 1 (rising/positive edge)
* At this moment Q = Qm = D, so the value of D is stored
* Afterwards the clock changes to 1, so the first latch no longer tracks D, so the value of Q is

stored
• The D flip-flop only changes its value on a clock edge

Lecture 13, Oct 6, 2022
More on Flip-Flops

• D-flip flops can be positive edge or negative edge triggered
– A negative edge triggered D-flip flop is basically a positive one but with clock inverted; it stores a

value on a clock negative edge (1 to 0)
• A latch tracks changes in its input as long as the clock is high, but a flip-flop only tracks changes on a

positive or negative clock edge (transition)
– D needs to be stable for some time (set-up time) before the clock changes, otherwise the flip-flop

ends up in a metastable state, so D and clock can’t change at the same time
• In Verilog register is a flip flop

Verilog Code for Sequential Circuits
• For a D-latch:

module D_latch(input logic D, clk,
output logic Q);

always_latch
if (clk == 1)

17

Q = D;
endmodule

• The always_latch makes it a latch
• If a case or if does not cover all cases, the compiler will infer a latch, i.e. it stores the previous value

– In this case that’s exactly what we want – we have no else, so the compiler creates a latch to
store the previous value of D and assign it to Q

• For a flip-flop:

module D_FF(input logic D, clk,
output logic Q);

always_ff @(posedge clk)
Q <= D;

endmodule

• posedge is a keyword that means the flip flop should trigger on the positive edge
– negedge is a negative edge trigger

• always_ff crates a flip flop
• When code describes flip flops, the assignments should use <=, not =

– <= is a nonblocking assignment used for sequential logic
– = is a blocking assignment used for combinational logic

• The stuff inside always_ff only executes on a positive edge, so we don’t need an if (whereas the latch
needs to check)

• For an 8-bit register (in the schematic it’s denoted by a D-flip flop with an 8-bit bus for D and Q):

module reg8(input logic [7:0] D,
input logic clk,
output logic [7:0] Q);

always_ff @(posedge clk)
Q <= D;

endmodule

• Note the only difference is D and Q are now buses, but inside the module the code is identical since we
assign all 8 bits at once

Resets
• How do we reset a flip-flop to a known value?

– Synchronously (on a clock edge) or asynchronously (independent of clock edge)
• In the synchronous case we can AND together D and a reset signal and then feed into the flip flop

– This is known as an active-low reset because when the reset signal is 0, the value is reset

Figure 10: Synchronous reset D-flip flop

module D_FF(input logic D, clk, resetn,
output logic Q);

always_ff @(posedge clk)
if (resetn == 0)

Q <= 1'b0;

18

Figure 11: Synchronous reset D-flip flop symbol

else
Q <= D;

end

• In the asynchronous case, the flip-flop can be reset regardless of the clock

Figure 12: Asynchronous reset D-flip flop

• Regardless of the state of the clock, as long as reset is 0, Q will be reset
• Asynchronous reset is marked by an AR instead of just R

Lecture 14, Oct 11, 2022
D-Flip Flop With Reset in Verilog
module D_FF(input logic D, clock, resetn,

output logic Q);
always_ff @(posedge clock, negedge resetn)

if (resetn == 0)
Q <= 1'b0;

19

else
Q <= D;

endmodule

• negedge resetn is added to the sensitivity list because it directly affects Q
– Whenever there’s a negative edge on resetn, Q is reset regardless of clock state

Multi-Bit Register With Reset
module reg8(input logic [7:0] D,

input logic resetn, clock,
output logic [7:0] Q);

// Note this is a synchronous reset
always_ff @(posedge clock)

if (!resetn)
Q <= 8'b0;

else
Q <= D;

endmodule

• We can also add an enable to determine whether data is loaded on a clock edge
– This can be done via a mux that passes a new D when enable is true and otherwise cycles Q back

into D
– We don’t just add an AND gate onto the clock because generally in a modern high speed circuit we

don’t want to add additional gates onto the clock, since that introduces delays that cause timing
issues

Figure 13: D-flip flop with enable

Counters

Cycle Q2Q1Q0

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111
8 000

• Circuits that count up or down every clock cycle
• Can we find a pattern in the bits?

– Q0, the LSB, toggles every clock cycle, so Q0(t + 1) = Q0 ⊕ 1
– Q1 toggles only in the cycle after Q0 is 1, so Q1(t + 1) = Q1 ⊕ Q0
– Q2 toggles only when both Q0 and Q1 are 1, so Q2(t + 1) = Q2 ⊕ (Q0Q1)

20

• A T-flip flop toggles its value on each clock cycle if T is 1; it’s made by cycling the output of a D-flip
flop back into the input with an XOR with T

Figure 14: T-flip flop implemented with a D-flip flop

Figure 15: T-flip flop symbol

Figure 16: 3-bit synchronous up-counter implemented with T-flip flops

• Note we should add a reset for all the flip-flops because when the circuit powers on, there is no guarantee
that they will initialize to 0

• This called a synchronous counter because all the clocks are the synchronized together
• Instead of a fixed 1 being fed into the first flip flop we can also use an enable input, so when enable is 0

the counter won’t count up
• Instead of resetting all the flip flops we might also want to load a preset value into all of them; this is

called a parallel load

module upcount(input logic [3:0] R,
input logic resetn, clock, E, L,
output logic [3:0] Q);

always_ff @(posedge clock, negedge resetn)
begin

if (!resetn)
Q <= 4'b0;

else if (L)
Q <= R;

else if (E)
Q <= Q + 1;

21

end
endmodule

Lecture 15, Oct 13, 2022
Clock Dividers (Prescalers)

• How do we generate a different clock frequency from what’s given?

Figure 17: Clock division by 2

• Example: Given a 100MHz clock, derive a circuit using D-flip flops to generate 50MHz and 25MHz
clocks

– The 50MHz clock can be made by tying the input clock into the clock of a T-flip flop
– The 25MHz clock can be made by putting the 50MHz clock into the clock of a T-flip flop
– This method is restricted to clock divisions by powers of two

• More generally we can use a counter in order to divide by any factor
– A NOR gate over all the counter bits can be used as a comparator to check for 0
– The comparator output can be ANDed together with some signal so the signal only passes through

when the counter reaches the desired value

Finite State Machines (FSM)
• Any sequential circuit can be modelled by some set of inputs wi →combinational circuit A →set of flip

flops →combinational circuit B →output
• A finite state machine is so named because a circuit with k registers (flip flops) can only be in one of a

finite number of states (2k states)

Example FSM

• Motor outputs its status on w
• If status is ok, the FSM should maintain z = 0
• If motor outputs a sequence of 1, 0, 1 then an error is occurred, so the FSM should output z = 1
• z is determined by the history of w
• First we need a state diagram:

• From this state diagram we can make a state table:

State Next w = 0 Next w = 1 z

A A B 0
B C B 0
C A D 0

22

State Next w = 0 Next w = 1 z

D C B 1

• Now we need to assign states
– There are 4 states, so we need 2 flip-flops y2, y1
– Choose state codes: A = 00, B = 01, C = 10, D = 11

• Now make the state-assigned table:

y2y1 Y2Y1 for w = 0 Y2Y1 for w = 1 z

00 00 01 0
01 10 01 0
10 00 11 0
11 10 01 1

• Now we basically have a truth table, we can synthesize the circuit:
– Y1 = w
– Y2 = w̄y1 + wy2ȳ1 (can be found through a 3-variable K-map with w, y1, y2)
– z = y2y1

Lecture 16, Oct 17, 2022
Alternative Design for Example FSM

• State machine designs are not unique

• From this state diagram we can make a state table:

State Next w = 0 Next w = 1 z

A A B 0
B C B 0
C A D 0
D C B 1

• Instead of using 2 flip flops we can use 4 flip flops y4y3y2y1
– Assign state codes as A = 0001, B = 0010, C = 0100, D = 1000
– This is a one-hot encoding, where for each state there is only 1 bit that’s 1

• State-assigned table:

y4y4y2y1 Y4Y3Y2Y1 for w = 0 Y4Y3Y2Y1 for w = 1 z

0001 0001 0010 0
0010 0100 0010 0
0100 0001 1000 0
1000 0100 0010 1

• We can synthesize the circuit simply by inspecting the state diagram
– Y4 is 1 in state D; transition to state D is from state C with w = 1, so Y4 = y3w
– Similar for Y3: transitions are from state D with w = 0 and from state B with w = 0 so

Y3 = (y4 + y2)w̄
– For Y2: transitions are from A with w = 1, B with w = 1, D with w = 1 so Y2 = (y1 + y2 + y4)w
– For Y1: transitions are from A with w = 0, C with w = 0 so Y1 = (y1 + y3)w̄

23

Figure 18: State diagram for the example problem

Figure 19: State diagram for the example problem

24

– Finally Z = y4
• This different circuit will produce the same behaviour as the one from the previous lecture
• We can do another alternative design in which each state represents the last 3 values of w

– This simply produces a 3-bit shift register with a comparator
– A shift register consists of flip-flops chained together

Verilog Code for Example FSM
• All we need to do in Verilog is to specify the state table (using a case statement)
• Separate the code into 3 sections:

1. Flip-flops (reset + update to new value)
2. State table
3. Output

module fsm(input logic w, clock, resetn,
output logic z);

// Define states
typedef enum logic [1:0] (A, B, C, D) statetype;
statetype ps, ns;
// 1. Flip flops
always_ff @(posedge clock, negedge resetn)

if (!resetn)
// Make present state A on reset
ps <= A;

else
// Otherwise, make the present state take the next state's value
ps <= ns;

// 2. State table
always_comb

// Determine next state from the present state
case (ps)

A: ns = w ? B : A;
B: ns = w ? B : C;
C: ns = w ? D : A;
D: ns = w ? B : C;

endcase
// 3. Assign output
assign z = (ps == D);

endmodule

• enum defines an enumeration, which makes the compiler encode the state for us
– The type after enum is the underlying type, in this case a 2-bit logic value
– The symbols in brackets after are the possible values for the enum; in this case we can refer to the

states now as A, B, C, D
– By default, these are in numerical order, but the compiler sees this only as a suggestion (if it can

optimize by changing the encodings, then it will do so)
• typedef <type> <name> defines a type alias, in this case statetype for the enum type

Lecture 17, Oct 18, 2022
Verilog For Shift Register State Machine
module fsm_shift(input logic lo, clock, resetn,

output logic z);
// State of the 3 flip flops

25

logic [3:1] y;
always_ff @(posedge clk, negedge resetn)

if (!resetn)
y <= 3'b000;

else
begin

y[3] = w;
y[2] = y[3];
y[1] = y[2];

// Equivalently:
// y <= y >> 1;
// y[3] <= w;

end
assign z = y[3] & ~y[2] & y[1];

endmodule

• Note again <= is a nonblocking assignment, which all happen at the same time
– This important because otherwise when y[2] = y[3]; happens, y[3] will already have been

updated!

Example: Traffic Light Controller
• On reset, Light A is green, Light B is red
• Every clock cycle, traffic sensors TA, TB make a decision:

– If traffic on TA, light A stays green, otherwise light A goes to yellow and then red; light B stays
red and then transitions to green

– Same scenario for TB and light B
• State diagram:

Figure 20: State diagram for traffic light controller

• State table:

Present 00 01 10 11 LA LB

S0 S1 S1 S0 S0 G R
S1 S2 S2 S2 S2 Y R

26

Present 00 01 10 11 LA LB

S2 S3 S2 S3 S2 R G
S3 S0 S0 S0 S0 G R

• State assignment:
– S0 = 00, S1 = 01, S2 = 10, S3 = 11
– Output encoding: G = 00, Y = 01, R = 10

• State assigned table:

y2y1 00 01 10 11 LA LB

00 01 01 00 00 G R
01 10 10 10 10 Y R
10 11 10 11 10 R G
11 00 00 00 00 G R

• Derive logic expressions:
– Use a 4-variable K-map
– Y2 = ȳ2y1 + y2ȳ1 = y2 ⊕ y1
– Y1 = ȳ2ȳ1T̄A + y2ȳ1T̄B

– Output: LA,1 = y2, LA,0 = ȳ2y1, LB,1 = ȳ2, LB,0 = ȳ2ȳ1

Key Take-Aways
• FSM consists of 2 blocks of combinational logic: calculating the next state from the current state, and

calculating the output from the current state
• On each clock edge the FSM advances to the next state, computed based only on the input and present

state
• There are multiple ways to specify/assign states; some are more efficient than others

– Minimal encoding: Minimum number of flip-flops
– One-hot encoding: One flip-flop for each possible state

• In Verilog, code is divided into 3 sections: the flip flops, the state table, and the output assignment

Lecture 18, Oct 20, 2022
Two’s Complement System

• Two’s complement is a way to represent negative numbers in binary
• Example: if we have a 4 bit number, if we add 11112 to it, this turns out to reduce its value by 1, so in

4 bits, 11112 represents −1
• Given a number k represented with n bits, −k is represented as 2n − k

– We can check for correctness by verifying that k + −k = 1 (after truncating the carry out)
– Example:

* n = 4, k = 1 =⇒ k = 00012, −k = 11112
* n = 4, k = 6 =⇒ k = 01102, −k = 10102

• Check: 01102 + 10102 = 100002 = 0 when carry out is dropped
* n = 5, k = 13 =⇒ k = 011012, −k = 100112

• Check: 011012 + 100112 = 1000002 = 0
• Shortcut: Invert all the bits and add 1

– This is because inverting all the bits is equivalent to calculating (2n − 1) − k, so adding 1 to it is
equal to 2n − k

– We can simply do this again to get from −k back to k!

27

• With two’s complement, the maximum value representable with n bits is reduced by half to make room
for the negative numbers

– e.g. for 4 bits we used to be able to represent up to 11112 = 15, with two’s complement we can
only go up to 01112 = 7, since 11112 will now represent -1

* However now we can represent down to 10002 = −8
• The MSB is 0 for positive numbers and 1 for negative numbers; we can use it as a sign indicator (the

sign bit)
• Sign extension: if we want to represent the same number with more bits, we simply duplicate the sign

bit into the new MSB bit positions
– Example:

* −1 represented with 4 bits is 11112, if we want to expand it to 8 bits, we duplicate the sign
bit as 111111112

* 1 represented with 4 bits is 00012, extend to 8 bits is 000000012
• Two’s complement allows us to do subtraction with the same hardware as addition – just add the

negative!
– XOR all the input bits by 1 to invert, and then utilize the carry-in to the full adder to add 1 in

order to convert the operand to its negative

Figure 21: Add/subtract ALU

Overflow
• If we add two numbers that are too large, we get an arithmetic overflow

– e.g. 01112 + 00012 is 7 + 1, but the sum is 10002, which in 4-bit two’s complement is −8; this is
because 8 can’t be represented in a signed 4-bit number

• When our result overflows the range of the output
• How do we detect overflow?

– Positive number plus positive number should have positive result
* Positive plus positive always has a carry out of 0
* When positive plus positive overflows, MSB (sign bit) would be 1 (since the result will have

the wrong sign)
– Negative number plus negative number should have negative result

* Negative plus negative always has a carry out of 1
* When negative plus negative overflows, sign bit would be 0

– Positive number plus negative number will never overflow
• To detect overflow, consider the MSB (sign bit) of the result and the carry-out; overflow occurs when

these have different values
– o = s3 ⊕ cout

28

Lecture 19, Oct 24, 2022
Processors

• Processes are logic circuits at their core, consisting of both combinational and sequential logic, controlled
by an FSM that dictates what operation it does

• Includes a set of n-bit general purpose registers to hold values to use
– RISC-V has 32 registers, each 32 bits (x0 to x31)
– Registers are very fast to access, but they can only hold a relatively small amount of information

• Includes an ALU
– Can add, subtract, multiply, AND, OR, XOR, shift, rotate, . . .

• Has an external interface (peripherals)
– Memory to hold data that the registers can’t store (DRAM)
– I/O devices, e.g. keyboard, network, display, etc
– Address: Who to communicate with
– Data: What to communicate
– Control: Whether we’re reading or writing

Simplified Processor Example
• 8 bit bus
• 4 8-bit registers, with enables Ri,in and inputs connected to the bus, and the outputs connected to

tri-state buffers to the bus with control Ri,out

– A tri-state buffer is used to disconnect an input from its output
– If we want to load a value into a register, we write the value to the bus, and enable the register we

want
– If we want to use the value from a register, we enable the correct tri-state buffer
– These hold the values we want to use in a computation or the result of a computation

Figure 22: Tri-state buffer

• ALU with addition, subtraction operations
– Since we can only read one 8-bit value from a register per clock cycle, we need a register to hold

the inputs to the ALU
– 8-bit A register with enable Ain, input from bus and output to the ALU input; input B comes

directly from the bus
– Output is written to another register G with enable Gin, output connected via a tri-state buffer

back to the bus with control Gout

• An external interface, a tri-state buffer connected to the main bus
• A control FSM, which produces the right values for all the enables – Ri,in, Ri,out, Ain, · · ·

– Inputs w, function, where w tells it to start an operation, and function is the operation it should
do

– An output done is asserted when operation is complete

Lecture 20, Oct 25, 2022
Simple Processor Continued

• Instructions:
– load Rx, Data

29

* Load Data into Rx, where Data comes from the external signal
* Need to enable the external signal input tri-state buffer, and enable a write to the correct

register
– move Rx, Ry

* Copies data from Ry into Rx
* Need to enable the tri-state buffer on the output of Ry, and enable a write to Rx

– add Rx, Ry
* Store Rx + Ry into Rx
* First enable the tri-state on output Rx, and enable the temporary A register for the ALU
* On the second clock cycle, enable the tri-state on output Ry, the ALU does the computation

and stores into G
* On the third clock cycle, store G into Rx

– sub Rx, Ry
* Store Rx - Ry into Ry
* Same thing as the add instruction but subtraction

• Tradeoff between instruction usability and complexity
– e.g. old processors used to have very complex instructions that compilers could not always take

advantage of
• Each instruction and register has an encoding

– 00 for load, 01 for move, 10 for add, 11 for sub
– These are referred to as “opcodes”, in this case 2-bit opcodes
– Registers are encoded as the register number (register index)
– e.g. add R1, R2 is encoded as 10, 01, 10

• When designing the processor we need to know how many steps (clock cycles) can instructions take
– The longest instruction is add/sub at 3 steps
– Therefore we need a 2-bit counter to count which step we’re currently on

* Counter with a clock, clear, and produces Q1, Q0
• Now turn those 2 bits into a 1-hot code

– 1-hot codes make the control FSM logic much easier to derive
• For the control FSM:

– Need a function register, taking in f1, f0, the opcode, 2-bit values for Rx and Ry, an input FRin

which is used to indicate when we’re loading a new instruction
– First decoder decodes the opcode into a 1-hot code for each instruction
– Second and third decoders decode the register inputs into 1-hot codes

• We then derive control signals for each step
– Ain = (I2 + I3)T1
– Gin = (I2 + I3)T2
– Gout = (I2 + I3)T3
– extern = I0T1
– Done = (I0 + I1)T1 + (I2 + I3)T3
– FRin = wT0
– Clear = Done + w̄T0

* w̄T0 means if we’re in state 0 and we aren’t starting an operation, we stay in state 0

Lecture 21, Oct 27, 2022
Introduction to Assembly Language

• A human-readable form of the processor’s native language
• Many different flavours, e.g. x86, ARM, RISC-V, etc
• Assembly is translated into binary machine code by an assembler

– High-level languages are translated into assembly and then compiled into machine code
– While high level languages such as C don’t care about the underlying processor, assembly is

targeted for a specific architecture

30

• Each instruction specifies two things: the operation and operands
– Operands can come from registers, memory, or constants in the instruction itself

• Assembly instructions are encoded as a word and stored in memory
– In RISC-V these are 32-bit words

Introduction to Computer Organization
• Processor communicates to memory via an address bus and data bus (bidirectional or two unidirectional

buses)
• Control signals such as read and write are on another bus
• I/O devices are connected to the same data bus, control signal bus, etc
• The memory and I/O ports are each assigned a range of addresses called memory maps

– This way we can identify whether a read/write is to memory or I/O or something else
– Referred to as memory-mapped I/O
– e.g. Memory can be mapped to addresses 0x0 - 0x3FFF'FFFF, LED can be mapped to addresses

0xFF20'0000 - 0xFF20000F
* In this case an address of e.g. 0x10000000 is in memory

Memory Architecture
• Registers are small, so memory is used to store large amounts of data
• Memory can be thought of as a 2D array that you can index into

– e.g. at address 0 is word 0, at address 4 is word 1, etc
* This is because words are 4 bytes but memory is byte-addressable

• With a k bit address (k address lines or wires), we can address A = 2k bytes or 2k−2 words
– The first k − 2 bits select the “row”, or the word, and the last 2 bits select the “column”, or the

byte within the word

Notes on Lab 6
• Most non-trivial circuits are separated into 2 functions

– The datapath (where the data moves), with e.g. ALUs, registers, etc
– The control path (manipulates the signals in the datapath), with e.g. mux select signals, register

enables, etc
• Given a datapath that computes A2 + B, compute Ax2 + Bx + C

– Registers holding values for A and B; enables on the datapath
* Inputs are muxed, with both register inputs coming either from the data input or from the

ALU output
– ALU

* Inputs are muxed, allowing either A or B to go to both inputs
* 2 operations: 0 adds, 1 multiplies

– Result register for the ALU
– To do the operation, we need to first compute A2, store it somewhere, and then add B to it

Lecture 22, Oct 31, 2022
Introduction to RISC-V

• One of the many instruction set architectures (ISAs)
• A newer, open source instruction set

– Designed recently so it’s less bloated and cleaner
• Different ISAs have different instructions, but some primitives are common across all of them
• The instruction set doesn’t define the underlying hardware – it exists as an interface between hardware

and software, but the hardware can be implemented in many different ways

31

• RISC-V comes in different flavours
– We will be using RISC-V 32I (32-bit integer)

• Instructions define operation and operands
– Operands can be registers, memory, constants, etc
– RISC-V has 32 registers, each 32 bits

RISC-V Instructions
• Arithmetic instructions

– e.g. an add operation:
* In C: a = b + c
* In assembly: add s0, s1, s2

• s0 holds a, s1 holds b, s2 holds c
• s1, s2 are source operands, s0 is the destination operand

– A subtraction would be sub s0, s1, s2
– e.g. a = b + c - d is add t0, s1, s2 and then sub s0, t0, s3

• Design principle: make the common case faster
– Use multiple simple instructions rather than one complex instruction, since simpler instructions

are faster in hardware
• Registers

– Internal to a processor; much faster to access than main memory, but there is a limited number
– In RISC-V the register set is x0 to x31, but there are special names:

* zero always holds the constant value 0
* s0 to s11, t0 to t6 are the “general purpose” registers, generally used to store variables
* ra, a0 to a7 are used for function calls
* sp, gp, fp are the stack pointer, global pointer, and frame pointer (more on this later)

• Constants (“immediate values”)
– These values are immediately available as part of the instruction (no fetching from memory

necessary)
– Use addi instruction: addi s0, s0, 4 performs a = a + 4

* Note there is no subi instruction, but we can use addi with a negative number
– We can also initialize values using immediates, by using an addi with the zero register

* e.g. addi s4, zero, -78 initializes s4 to -78
– Use 0x prefix for a hexadecimal number, 0b for a binary number
– Immediates can only be up to 12 bit two’s complement numbers since we need to use the other 20

bits for the instruction
* The numbers are sign-extended to 32 bits

– If the numbers are bigger than 12 bits:
* Use lui, load upper immediate, followed by an addi

• lui allows specification of a 20-bit value, which is loaded into the most significant 20 bits
of the instruction and sets the rest to 0

• The addi can add in the other 12 bits
• e.g. if we want a = 0xABCDE123 we can do lui s2, 0xABCDE followed by addi s2, s2,

0x123
* Alternatively we can use a pseudo-instruction li, load 32-bit immediate, and just do li s2,

0xABCDE123
• The assembler converts the li into lui and addi
• Pseudo-instructions make our lives easier; they are not real instructions but are converted

into real instructions by the assembler

32

Lecture 23, Nov 1, 2022
RISC-V Instructions Continued

• Arithmetic operations can only access registers and immediates, not main memory
– We need a memory instruction to first retrieve a value from memory before it can be used, and

then write back a value if needed
– This is known as a load-store architecture – we can only access memory via loads and stores

• Memory operations
– Load word instruction reads a data word from memory into a register (reads 4 bytes at once)

* e.g. lw s0, 8(zero) performs a = mem[2];
• 8 is the offset address, (zero) is the base address
• We are using the zero register to start at address 0 and offset by 8, so we’re accessing

address 0x00000008
• Note memory is byte addressable, so address 8 is the third word

* Load word requires the address to be word-aligned, that is, a multiple of 4
• Can’t load a word that’s split up into two places in memory

– Store word instruction writes a data word from a register into memory (writes 4 bytes at once)
* e.g. sw s0, 12(zero) performs mem[3] = a;

Basic Assembly Program
.data # Global data section - stores data used by the whole program

LIST is a label, which we can use to refer to the data later
These 4 words could be stored anywhere, but they are guaranteed to be contiguous
LIST: .word 1, 2, 3, 4 ; Declare 4 words, initialize to 1, 2, 3, 4

.text # Program instructions

_start: # The entry point of the program; another label
la s1, LIST # Load address of LIST into s1
lw s2, 0(s1) # s2 = mem[LIST + 0]; s2 is now 1
lw s3, 4(s1) # s3 = mem[LIST + 4]; s3 is now 2
add s2, s2, s3 # s2 = 1 + 2; s2 is now 3
lw s3, 8(s1) # s3 = mem[LIST + 8]; s3 is now 3
add s2, s2, s3 # s2 = 3 + 3; s2 is now 6
lw s3, 12(s1) # s3 = mem[LIST + 12]; s3 is now 4
add s2, s2, s3 # s2 = 6 + 4; s2 is now 10

END: ebreak # Transfer control over to the debugger
Without the ebreak, the processor keeps executing whatever is in memory

• .data, .global, .text are assembler directives – not instructions, but tell the assembler about what it
should do

– .data declares the global data section
* We can use this to store data used by the whole program
* In this example, it’s an array

– .text declares the section for the program itself
– .global declares something to be visible outside the file (for a multi-file program)
– .word declares the things that come next should take up an entire word of memory

• la is the load-address psuedo-instruction, which loads the address of some global data into a register

33

More Instructions
• Logic instructions

– Bitwise operations that operate on 2 source registers
– and s0, s1, s2 puts the bitwise AND of s1 and s2 into s0
– Similarly for or s0, s1, s2 and xor s0, s1, s2
– not s0, s1 puts the bitwise NOT of s1 into s0

* Actually a pseudo-instruction, compiles to xori s0, s1, -1
– Also have immediate versions andi, ori, xori

Lecture 24, Nov 3, 2022
More RISC-V Instructions

• 4 types of shift instructions:
– Shift left logical sll

* Fill the LSBs with zero
– Shift right logical srl

* Fill the MSBs with zero
– Shift right arithmetic sra

* Fill the MSBs with the sign bit
* This keeps the sign of a two’s complement negative integer

– Also have immediate versions slli, srli, srai
* The immediates are 5 bits, since we only ever need to shift something by a maximum of 32

bits
– Left-shifting by N is equal to multiplying by 2N

– Right shifting by N is equal to dividing by 2N (and truncating the remainder)
• Using shifts we can extract or assemble bit fields

– If s6 = 0x1234ABCD:
– srli s6, s7, 8 # s6 = 0x001234AB
– andi s6, s6, 0xFF # s6 = 0x000000AB

• Accessing bytes or half-words
– lb and lbu – load byte and load byte unsigned

* Since we’re taking 8-bits from memory and putting it into a 32-bit register we need to know
what to do with the rest of the bits

* lb fills the rest with the sign bit (sign extension), lbu fills with zero
* Does not have to be aligned

– lh and lhu – load half word and load half word unsigned
* Has to be half-word aligned (address divisible by 2)

– sb and sh – store byte and store half word
* Both store the least significant byte and half-word of the register
* This keeps the other bytes in the word the same, so there is no question of sign extension

Program Flow
• Like data, the program itself is also stored in memory

– Each instruction is 32-bits so each consecutive instruction is a difference in memory address by 4
• The program counter (PC) holds the address of the current instruction the processor is executing

– When an instruction completes, it’s automatically incremented by 4
– By changing the program counter, we can make the program jump around, thus accomplishing

nonlinear program flow
• We have conditional branch instructions that modify the program counter based on some condition, so

we can accomplish structures such as conditionals and loops
– There are many flavours of conditional branch instructions, but they al compare 2 source registers

34

* beq s1, s2, LABEL – branch if equal, will branch if s1 and s2 are equal and set the program
counter to LABEL

* bne – branch if not equal
* blt, bge – branch less than, branch greater than or equal to

• Unsigned versions bltu, bgeu
* Pseudo-instructions:

• beqz, bnez – branch if equal to zero/not equal to zero
• bnez, blez, bgtz, bltz, etc
• bgt, ble

Lecture 25, Nov 14, 2022
Program Flow (Continued)

• Jump instructions (unconditional branches): j LABEL
– Jump and link jal, jump register jr relate to subroutines (function calls)

• In a loop, we jump back to the beginning of the loop if we want to keep looping
• In an if/else statement, we jump over the “if” code if the condition is not true

Examples

• Continuously decrement s8 until it is zero:

LOOP1:
addi s8, s8, -1 # Decrement s8
bnez s8, LOOP1 # Jump back to the label if s8 is not zero

• Converting from C code:

if (s8 > s9) {
// THEN code

}
else {

// ELSE code
}
// AFTER code

ble s8, s9, ELSE1
THEN1:

THEN code
j AFTER1

ELSE1:
ELSE code

AFTER1:
AFTER code

• Note the conditional jump instructions can only compare against registers, not immediates, so we have
to load an immediate into a register first if we want to compare against a constant value

• For loop example:

for (s8 = 1; s8 < 5; s8++) {
s9 = s9 + s10;

}

addi s8, zero, 1
addi t0, zero, 5

LOOP3:

35

bge s8, t0, DONE
add s9, s9, s10
addi s8, s8, 1
j LOOP3

DONE:
Code after

Machine Code
• Assembly language is human readable, but ultimately compiled to machine code
• All instructions are encoded into 32 bits (even if they may not need as many), because regularity

supports simplicity, which improves performance
• RISC-V has 4 min instruction formats:

– R-type (register type): Instructions that use two register source operands, e.g. add
* Bits 31-25 (7) are the function code func7

• These are used if the instruction needs more bits than just the opcode to specify their
behaviour

* Bits 24-20 (5) represent source register #2 rs2
* Bits 19-15 (5) represent source register #1 rs1
* Bits 14-12 (3) are 3 more function bits func3
* Bits 11-7 (5) represent the destination register rd
* Bits 6-0 (7) represent the opcode op

• These identify the operation
– I-type (immediate type): Instructions that use a register and an immediate, e.g. addi

* Bits 31-20 (12) are the immediate value imm12
* Bits 19-15 (5) represent source register #1 rs1
* Bits 14-12 (3) are 3 function bits func3
* Bits 11-7 (5) represent the destination register rd
* Bits 6-0 (7) represent the opcode op
* Notice the regularity of how the 3 function bits, source register 1, destination register, and

opcode are in the same bits as in R-type
– S/B-type (store/branch type): Storing into memory or branching
– U/J-type (upper immediate/jump type): Load upper immediate or jump
– The type of instruction is part of the opcode

• Examples:
– add s2, s3, s4 (R-type)

* Opcode for add is 51, 0b0110011
* Both func7 and func3 are 0
* s2 is x18, 0b10010
* s3 is x19, 0b10011
* s4 is x20, 0b10100
* The final encoded instruction is 0000000'10100'10011'000'10010'0110011 or 0x01498933

– addi s0, s1, 15
* Opcode for addi is 19, function bits all 0
* s0 is x8, s1 is x9
* The final encoded instruction is 000000001111'01001'000'01000'0010011 or 0x00F48413

Lecture 26, Nov 15, 2022
Subroutines (Functions)

• Allows code modularization and reuse
• Subroutines have input arguments and return values

36

• To invoke a subroutine we need to branch into it, but we need to branch back when the subroutine is
done, so branching is different here

• The jump and link instruction jal is used (the “link” part remembers how to get back)
– jal LABEL jumps to the label, and saves the program counter of the instruction after it into the

return address register, ra
• To return from a subroutine use the jump register instruction jr

– jr ra jumps back into the address in ra
– There is only one ra register, so if we want to call subroutines inside subroutines we need to use

the stack

Passing Arguments and Returning Values
• Calling subroutines involve a calling convention, an agreement between caller and callee

– The caller and callee need to agree on where the arguments and return values are stored
– The callee must also not interfere with the behaviour of the caller

* The subroutine must not change any registers that the caller are using
• In RISC-V the 8 registers a0 to a7 are used for function arguments, from left to right

– If we have more than 8 arguments, we need to use the stack
• The return value is stored in a0
• Example:

int main() {
add6(11, 22, 33, 44, 55, 66);

}

int add6(int a, int b, int c, int d, int e, int f) {
return a + b + c + d + e + f;

}

_start:
Load all the arguments into registers
addi a0, zero, 11
addi a1, zero, 22
addi a2, zero, 33
addi a3, zero, 44
addi a4, zero, 55
addi a5, zero, 66
Call subroutine
jal ADD6

END:
ebreak

ADD6:
Add all the values together
add s1, a0, a1
add s2, a2, a3
add s3, a3, a5
add s1, s1, s2
Set a0 to return value
add a0, s1, s3
Jump back
jr ra

• Note problem with this: generally we don’t want to use the s registers in the subroutine because the
caller may be using these!

– Solution is to use the stack

37

Lecture 27, Nov 17, 2022
Using the Stack

• A region of memory used for temporary storage of data
– LIFO structure

• Starts at a large address offset, grows downward (i.e. to lower addresses)
• The stack pointer (in the sp register) points to the element at the top of the stack

– Adding a word to the stack decrements the stack pointer by 4
• The stack is important for subroutine calls since we can use it to save and restore registers

– By saving registers onto the stack, we can make sure a subroutine does not trample on the caller
• In RISC-V there are preserved registers and nonpreserved registers

– Preserved registers s0 to s11 and sp must take on the same values before and after a subroutine
call (i.e. subroutines must save these)

– Non-preserved registers t0 to t6 can be changed by subroutines (i.e. subroutines are free to modify
these)

* Registers a0 to a7 are also non-preserved
– In the example from the previous lecture, in order to respect the calling convention we need to

push the s registers onto the stack, or use the t registers
– Note this is only a convention and not enforced in hardware

• Example: pushing 3 registers onto the stack:

addi sp, sp, -12
sw s1, 8(sp)
sw s2, 4(sp)
sw s3, 0(sp)

• To restore the registers back:

lw s3, 0(sp)
sw s2, 4(sp)
lw s1, 8(sp)
addi sp, sp, 12

Nested Subroutines
• To call a subroutine from another subroutine, we need to save the ra register onto the stack
• Example:

int main() {
add6(11, 22, 33, 44, 55, 66);

}

int add6(int a, int b, int c, int d, int e, int f) {
return add3(a, b, c) + add3(d, e, f);

}

int add3(int x, int y, int z) {
return x + y + z;

}

_start:
Load all the arguments into registers
addi a0, zero, 11
addi a1, zero, 22
addi a2, zero, 33
addi a3, zero, 44

38

addi a4, zero, 55
addi a5, zero, 66
Call subroutine
jal add6

END:
ebreak

add6:
Push the return address register onto the stack
addi sp, sp, -4
sw ra, 0(sp)
Call add3, which makes a0 = a0 + a1 + a2
This will overwrite ra
jal add3
Save a0 temporarily
addi t0, zero, a0
Load the arguments and call add3 again
addi a0, zero, a3
addi a1, zero, a4
addi a2, zero, a5
jal add3
Add the 2 results
add a0, a0, t0
Return, but first pop ra off the stack
lw ra, 0(sp)
addi sp, sp, 4
jr ra

add3:
add a0, a0, a1
add a0, a0, a2
jr ra

• Using the stack we can push additional arguments onto it if we need more than 8 arguments
– Freeing these arguments is the responsibility of the caller – the callee does not restore the stack

pointer
• Caller save: t0 to t7, a0 to a7, sp if necessary
• Callee save: s0 to s11, saved and restored before the callee returns

Lecture 28, Nov 21, 2022
Subroutine and Stack Example
int FINDSUM(int N) {

int sum = 0;
while (N != 0) {

sum = sum + N;
N = N - 1;

}
return sum;

}

int main() {
FINDSUM(5);

39

}

.data
N: .word 5
.text
.global _start

_start:
la s4, N
lw a0, 0(s4)
jal FINDSUM
ebreak

FINDSUM:
addi t0, zero, 0

WHILE:
beqz a0, ENDLOOP
add t0, t0, a0
addi a0, a0, -1
j WHILE

ENDLOOP:
add a0, zero, t0
jr ra

• Recursive version:

int FINDSUM(int N) {
if (N == 0)

return 0;
else

return N + FINDSUM(N - 1);
}

FINDSUM:
bnez a0, PUSH
jr ra

PUSH:
addi sp, sp, -8
sw a0, 4(sp)
sw ra, 0(sp)

addi a0, a0, -1
jal FINDSUM

lw t0, 4(sp)
add a0, a0, t0

lw ra, 0(sp)
addi sp, sp, 8
jr ra

40

Lecture 29, Nov 22, 2022
Input/Output

• Memory mapped I/O – we can manipulate I/O devices though loads and stores to specific memory
addresses

– Devices sit at the memory locations for certain addresses and respond to those addresses
– Consequently real memory ignores those addresses
– These are known as address spaces

• The address bus goes into an address decoder, which outputs enable signals to different memory or I/O
devices depending on which device’s memory map the address is in

– This enable signal controls which device the data on the bus is written to
– The address decoder also controls a mux of all the device outputs to select which device’s output

goes on the data input bus to the CPU
• Example: I/O device 1 is on memory address 0x20001000; write the value 7 to this device and read its

output
– When we read data from the device, this may or may not be the same data we sent; it could also

be e.g. an ack or some processed form of data

li s1, 0x20001000 # Load the device address
addi s0, zero, 7
sw s0, 0(s1) # Write the value to the device
lw s0, 0(s1) # Read back a value from the device

• Often we might need a delay loop to intentionally slow down the CPU to match the speed of the I/O
device

– e.g. using a delay when updating a counter connected to a hex display to make the numbers
readable

Lecture 30, Nov 24, 2022
Polling

• Repeatedly checks to see if a device is ready or if there has been an event, e.g. checking for a button
input

• Example: system with 4 keys turning on LEDs, keys are at the lowest 4 bits of 0xFF200050, LEDs at
the lowest 4 bits of 0xFF200000

_start:
li s0, 0xff200050 # Load address of keys
li s1, 0xff200000 # Load address of LEDs

Repeatedly check the keys to see if they have been pressed
POLL:

lw s2, 0(s0)
beqz s2, POLL # If no keys are pressed, poll again

WAIT:
lw s3, 0(s0)
bnez s3, WAIT # Wait until keys are released
li s3, 1 # If key 0 is pressed, then s3 is 0b0001
bne s2, s3, CHECK_1
li s4, 0 # Turn on 0 LEDs if key 0 is pressed
j UPDATE_LED

CHECK_1:
li s3, 2
bne s2, s3, CHECK_2

41

li s4, 1
j UPDATE_LED

CHECK_2:
li s3, 4
bne s2, s3, CHECK_3
li s4, 3
j UPDATE_LED

CHECK_3:
li s4, 7 # No need to do another check, this is the only scenario left

UPDATE_LED:
s2 s4, 0(s1) # Actually update the LEDs
j POLL

Interrupts
• Polling is inefficient, since the processor is constantly checking for events and so cannot do other work
• Instead we can use interrupts: the processor executes code normally, and when an event occurs the

code execution is interrupted so the processor can handle the event
• The CPU first needs to be configured to accept interrupts
• Since interrupts can occur at any point during code execution, in order to return to execution after

handling an interrupt, the CPU needs to save the state (this is done automatically)
– Similar to calling subroutines, except all registers are saved
– The CPU then jumps to an interrupt handler, and when the interrupt is done, it restores the

registers and goes back to the old
• Unlike polling, interrupts can happen anytime (once set up), but is more difficult to do

– Polling is good when the wait is short
– Interrupts are better for medium to long wait events

• Examples of events handled by interrupts:
– External devices such as UARTs, USBs, network adapters, etc
– OS timer
– Disk I/O
– Debugging breakpoints
– Program errors (e.g. misaligned memory access, divide by zero, segfaults)

* These are also known as exceptions and always arise within the CPU
• Interrupts from external devices come from an IRQ (interrupt request) line when the interrupt is

acknowledged, the CPU sends back a signal to the device via an IACK (interrupt acknowledge) line
– When the external device receives the ack, it will de-assert the IRQ line

• Interrupt handling uses Control and Status Registers (CSRs), which are special registers that monitor
system state

– Cannot be repurposed and are not interchangeable
– Can be read and written to, but need special instructions
– ustatus, uie (interrupt enable), utvec (trap/interrupt handler base address), uepc (exception

program counter)
– CSRs that start with u are “user” registers

• System instructions:
– ebreak - pause execution (breakpoint)
– uret - return from interrupt handler
– csrrw - read/write CSR
– csrrsi - read and set bits in CSR (immediate)

42

Lecture 31, Nov 28, 2022
Using Interrupts

• When an interrupt occurs:
1. The CPU saves the pc of the interrupted instruction to uepc
2. The CPU jumps to the interrupt handler address, as specified by the interrupt vector table utvec
3. The interrupt handler code executes
4. Execution returns to interrupted instruction

• To enable interrupts:
1. Configure the specific device being used as the interrupt source
2. Set utvec to the address of the interrupt handler
3. Set interrupt enable bit in ustatus
4. Set interrupt bit for interrupt source in uie

• The interrupt handler is like a subroutine, except it cannot use any registers without saving them, as
interrupts can occur at any time

• Example: timer interrupt
– 0xFFFF0018 and 0xFFFF001C hold the current time count
– 0xFFFF0020 and 0xFFFF0024 hold the timer comparison value (interrupt on hitting this value)

.data
curr_time: .word 0xffff0018
time_cmp: .word 0xffff0020
counter: .word 0

.text

.global _start
_start:

Set up timer
la s0, time_cmp
li s1, 1000
sw s1, 0(s0)
Enable interrupts
la t0, timer_handler
csrrw zero, utvec, t0
csrrsi zero, utstatus, 1
csrrsi zero, uie, 0x10

LOOP:
The processor can now do anything
j LOOP

timer_handler:
Save registers as necessary
addi sp, sp -12
sw t0, 0(sp)
sw t1, 4(sp)
sw t2, 8(sp)
Increment counter
la t1, counter
lw t2, 0(t1)
addi t2, t2, 1
sw t2, 0(t1)
Set a new timer comparision value (TODO)
lw t0, 0(sp)
lw t1, 4(sp)

43

lw t2, 8(sp)
addi sp, sp, 12
uret

Lecture 32, Dec 1, 2022
Timing Analysis

• So far we’ve assumed that our gates operate with zero delay, but this is not true
• Capacitance of wires and gates introduce delay, which determines the clock speed
• Consider:

module muxDFF(input logic w, r, L, E, clock,
output logic Q);

always_ff @(posedge clock)
if (L)

Q <= r;
else if (E)

Q <= w;
endmodule

module shift4(input logic [3:0] SW, KEY,
output logic [3:0] LEDR);

logic [3:0] Q;
muxDFF u3(KEY[0], SW[3], KEY[2], KEY[1], KEY[3], Q[3]);
muxDFF u2(Q[3], SW[2], KEY[2], KEY[1], KEY[3], Q[2]);
muxDFF u1(Q[2], SW[1], KEY[2], KEY[1], KEY[3], Q[1]);
muxDFF u0(Q[1], SW[0], KEY[2], KEY[1], KEY[3], Q[0]);
assign LEDR = Q;

endmodule

• What is the maximum clock frequency at which this circuit can operate?
– tCQ is the “clock to Q” propagation delay, time delay from clock change to output observed
– There are also delays through the muxes before we’re ready to load D again

• Timing analysis for the flip flops:
– Setup time (tsu): D has to have been stable for some amount of time before the clock edge
– Hold time (th): D has to be held stable for some amount of time after the clock edge

• The minimum clock period Tmin = tCQ + tmux + tmux + tsu

– The signal must propagate through the first flip flop and then two muxes, and then be stable for
some amount of time

– Fmax = 1
Tmin

• When doing the analysis we look at flip-flop to flip-flop paths, from a source to a sink, and we find the
longest path

Clock Skew
• It is possible for the clock edge to not arrive at the same time to all the flip flops

– On a large chip there can be significant delay in the wires
• On a diagram this is shown as a box with a delta in it, to show the possibility of skew
• We measure the skew time as tskew = arrival time of clock at the sink - arrival time of clock at the

source
– The sink takes its input from the output of the source

• Skew can be positive or negative

44

– Positive skew allows us to operate at a higher frequency, since this gives more time between the
rising edge of the source clock to the next rising edge of the sink clock

– Negative skew gives a lower maximum frequency
– The effective period is reduced/elongated by the skew time

Set-Up Time Violation
• Find all paths between flip flops, and look for the longest such path, including setup time
• Another way to think about the setup-time violation is that the logic is too slow for the data to arrive

at the input of the sink before the clock changes
• The constraint is tmin ≥ tCQ + tlogic,max + tsu + ∆

Lecture 33, Dec 5, 2022
Hold Time Violation

• We also want to calculate for hold time violations, which are dictated by the shortest path between flip
flops

– Whereas the previous one did not consider hold time, this does not consider setup time
• In this case the data tries to race ahead of the clock (race through) and change D of the sink during

the hold time of the previous signal
• Constraint: th + ∆ ≤ tCQ + tlogic,min

– th + ∆ is the amount of time required for D of the sink to be stable, from the rising edge of the
source clock

– tCQ + tlogic,min is the time between rising edge of the source clock and the signal propagating to D
of the sink

• In order to prevent this, we need to delay the change of D, sometimes by inserting additional logic to
increase tlogic,min

• Note this is unrelated to clock frequency

45

	Lecture 1, Sep 8, 2022
	Why Build Hardware?
	When to Build Hardware?
	Assembly Language

	Lecture 2, Sep 12, 2022
	Number Systems

	Lecture 3, Sep 13, 2022
	Logic Circuits
	Logic Gates
	Truth Tables
	Other Gates

	Lecture 4, Sep 15, 2022
	Logic Expressions: Sum of Products and Products of Sums
	Sum of Products

	Product of Sums

	Lecture 5, Sep 19, 2022
	Boolean Algebra Basics
	Proof by Perfect Induction

	Lecture 6, Sep 20, 2022
	Functional Completeness of NAND and NOR
	Example
	Example 2

	Lecture 7, Sep 22, 2022
	SystemVerilog HDL
	Multiplexers (Mux)
	Adders

	Lecture 8, Sep 26, 2022
	Hierarchical Verilog
	Example

	Lecture 9, Sep 27, 2022
	Additional Verilog Statements
	Karnaugh Maps (K-Maps)

	Lecture 10, Sep 29, 2022
	3-Variable K-Maps
	Terminology
	4-Variable K-Maps

	Lecture 11, Oct 3, 2022
	Procedure for a Minimum Cost Cover
	Don’t Cares
	Sequential Circuits
	RS Latch

	Lecture 12, Oct 4, 2022
	More on RS Latches
	Characteristic Tables
	Gated RS Latch
	Gated D Latch
	Flip-Flops

	Lecture 13, Oct 6, 2022
	More on Flip-Flops
	Verilog Code for Sequential Circuits
	Resets

	Lecture 14, Oct 11, 2022
	D-Flip Flop With Reset in Verilog
	Multi-Bit Register With Reset
	Counters

	Lecture 15, Oct 13, 2022
	Clock Dividers (Prescalers)
	Finite State Machines (FSM)
	Example FSM

	Lecture 16, Oct 17, 2022
	Alternative Design for Example FSM
	Verilog Code for Example FSM

	Lecture 17, Oct 18, 2022
	Verilog For Shift Register State Machine
	Example: Traffic Light Controller
	Key Take-Aways

	Lecture 18, Oct 20, 2022
	Two’s Complement System
	Overflow

	Lecture 19, Oct 24, 2022
	Processors
	Simplified Processor Example

	Lecture 20, Oct 25, 2022
	Simple Processor Continued

	Lecture 21, Oct 27, 2022
	Introduction to Assembly Language
	Introduction to Computer Organization
	Memory Architecture
	Notes on Lab 6

	Lecture 22, Oct 31, 2022
	Introduction to RISC-V
	RISC-V Instructions

	Lecture 23, Nov 1, 2022
	RISC-V Instructions Continued
	Basic Assembly Program
	More Instructions

	Lecture 24, Nov 3, 2022
	More RISC-V Instructions
	Program Flow

	Lecture 25, Nov 14, 2022
	Program Flow (Continued)
	Examples

	Machine Code

	Lecture 26, Nov 15, 2022
	Subroutines (Functions)
	Passing Arguments and Returning Values

	Lecture 27, Nov 17, 2022
	Using the Stack
	Nested Subroutines

	Lecture 28, Nov 21, 2022
	Subroutine and Stack Example

	Lecture 29, Nov 22, 2022
	Input/Output

	Lecture 30, Nov 24, 2022
	Polling
	Interrupts

	Lecture 31, Nov 28, 2022
	Using Interrupts

	Lecture 32, Dec 1, 2022
	Timing Analysis
	Clock Skew
	Set-Up Time Violation

	Lecture 33, Dec 5, 2022
	Hold Time Violation

