Lecture 5, Sep 19, 2022

Enthalpy

- Consider a hot water tank
 - To do work with it, we can transfer heat to expand a gas, doing work
 - * The amount of work depends on the internal energy
 - We can also use the water's pressure
 - * If we open the bottom of the tank, we can get more work than if we open the top of the tank * The amount of work depends on the pressure
- The ability to do work by a system depends on its pressure and internal energy
- Consider a bit of water coming out of the tank with volume V, mass m, pressure P, area A, moving by a distance L
 - The force exerted by the system to push the liquid out is F = PA, so work done is PLA
 - This is called the *flow work* $W_{flow} = pV$
 - The flow work per unit mass is $w_{flow} = \frac{W_{flow}}{m} = \frac{PV}{m} = Pv$ where v is the specific volume The flow carries u + pv where u is the internal energy per unit mass of the water

Definition

Enthalpy H = U + PV, is a measure of the potential to do work

- Enthalpy is an extensive property with units of Joules
- Define the specific enthalpy $h = \frac{H}{m}$, an intensive property For an ideal gas u is a function of T only, so in this case h = u + Pv = u + RT is a function of T only
- Consider rate of mass \dot{m}_1 entering the system and \dot{m}_2 exiting the system
 - Rate of energy entering the system is $\dot{m}_1(u_1 + P_1v_1)$
 - Rate of energy exiting the system is $\dot{m}_2(u_2 + P_2v_2)$
- Consider an isovolumetric process; add heat δQ to a system resulting in dU
 - Since this is a constant volume process $\delta w = 0$, so $\delta Q = dU$, the heat added is directly added to internal energy
- Consider an isobaric process; add heat δQ
 - The system is allowed to expand, so it does work $\delta W = -P \, \mathrm{d} V$
 - Part of the energy put in becomes work
 - $-\delta Q + \delta W = \mathrm{d}U \implies \delta Q = \mathrm{d}U + P \,\mathrm{d}V$
 - Note $H = U + PV \implies dH = dU + P dV + V dP = dU + P dV$ for a constant pressure process
 - For an isobaric process the heat added is equal to the change in enthalpy

Specific Heats

- Add heat Q to a mass m, resulting in ΔT , then the specific heat $c_{avg} = \frac{Q}{m\Delta T} = \frac{q}{\Delta T}$
- The relationship between q and ΔT is not necessarily linear, so c(T) is a function of temperature

Definition

The specific heat $c(t) = \frac{\delta q}{\mathrm{d}T}$

- Consider heating a system at constant volume ($\delta q = du$)
 - Define the specific heat at constant volume $c_v = \left(\frac{\partial u}{\partial T}\right)_{V}$
- Define the specific heat at constant pressure $c_p = \left(\frac{\partial h}{\partial T}\right)_{T}$

- For an ideal gas, we can write these as total derivatives since h and u are functions of T only
 Note h = u + RT ⇒ dh/dT = du/dT + R ⇒ c_p = c_v + R

Important

For an ideal gas, $c_p = c_v + R$

Definition

The specific heat ratio $\gamma = \frac{c_p}{c_v}$

- Assume c_p, c_v are constants, then $\Delta u = c_v \Delta T, \Delta h = c_p \Delta T$

- In this case
$$dh = du + v dP$$

- $du = c dT$

$$du = c dT_{cT_2}$$

 $-\Delta h = \int_{T_1}^{T_2} c \, \mathrm{d}T + \int_{P_1}^{P_2} v \, \mathrm{d}P, \text{ where } c \text{ and } v \text{ are both constants}$

- For incompressible substances enthalpy can be increased by adding heat or increasing the pressure
- If the process is neither isobaric nor isovolumetric:

$$-\Delta u = c_v (T_2 - T_1)$$

- $-\Delta h = c_p(T_2 T_1)$
- -u and h are properties that are path independent, so even if the process is neither isobaric nor isovolumetric, we can equate it to them