Lecture 4, Sep 15, 2022

The First Law of Thermodynamics

• For a control mass, energy transfer due to a temperature difference is defined as heat Q, and all other forms of energy transfer are defined as work W

$$-Q + W = \Delta E$$

Important

Energy transfer to a system is positive; energy transfer from a system is negative

- As a rate equation: $\dot{Q} + \dot{W} = \frac{dE}{dt}$
- Modes of work:
 - Boundary work: force acts on the boundary of the system, e.g. expansion and compression of a gas
 - * Assuming a quasi-equilibrium process and no friction, then W = -PV
 - * $\delta W = -P \, \mathrm{d}V$
- Constant volume processes do no work
- For an isothermal process $W = -mRT \ln \left(\frac{V_2}{V_1} \right)$
 - If the gas is expanding, $V_2 > V_1$ and the work is negative, so it does work on the surroundings

Polytropic Processes

- Assume $PV^n = c$, where n, c are constants
- n=1 is an isothermal process (since PV=mRT is constant, so T is constant)
- n = 0 is an isobaric process (since then $PV^0 = P = c$)
- $W_{12} = \int_{V_1}^{V_2} \frac{c}{V^n} dV = -c \left[\frac{V^{1-n}}{1-n} \right]_{V_1}^{V_2} = c \left(\frac{V_2^{1-n} V_1^{1-n}}{1-n} \right)$
- $W_{12} = \frac{P_2 V_2 P_1 V_1}{n-1}$ assuming $n \neq 1$