Lecture 33, Dec 1, 2022

Thermal Radiation

- Consider an enclosure at temperature T_{surr} filled with vacuum, containing an object of temperature T_s $-T_s = T_{surr}$ at equilibrium
- Thermal radiation is energy emitted by matter as a result of its finite temperature
 - Radiation has wave patterns (EM waves)
 - Thermal radiation typically has wavelengths of 0.1 to 100µm
 - * UV is 0.1 to $0.4\mu m$
 - * Visible radiation is 0.4 to $0.7\mu m$
 - * IR radiation is 0.7 to 100µm
- Radiation is released with energy level changes from an excited state
 - When radiation is absorbed we go from lower to higher energy states, similar to spectroscopy
 - For infrared radiation this corresponds to vibrational energy levels
 - Visible radiation corresponds to electronic energy levels (typically outer electrons)
- Radiation is a volumetric phenomenon, but most solids are "opaque", so emissions from within the object will just be immediately reabsorbed
 - This is why we usually consider it a surface property
- A blackbody is a perfect emitter and absorber of radiation
 - At a given temperature, no surface can emit more energy than a blackbody
 - It also emits radiation equally in all directions ("diffuse" emission)
- Stefan-Boltzmann Law: The radiation energy emitted by a blackbody per unit time per unit area is given by $E_b = \sigma T^4$ for the Stefan-Boltzmann constant $\sigma = 5.67 \times 10^{-8} \,\mathrm{W/m^2 \, K^4}$
 - $-E_b$ is the blackbody emissive power
- A blackbody is a theoretical object, but some things come close:
 - Black paint
 - Isothermal cavity (e.g. a box with a very small hole, the hole is a blackbody)
- The spectral distribution of blackbody radiation has the form $\frac{c_1}{\lambda^5 \exp\left(\frac{c_2}{\lambda T}\right) 1}$
- In a real body, the radiation emission and absorption are dependent on wavelength and direction
 - e.g. CO₂'s absorption spectrum absorbs more in the region of sunlight reflected by Earth's surface, which causes the greenhouse effect
 - Real surfaces can emit more in certain directions
 - Real surfaces also never have the same overall emission power as a blackbody
- We can define the emissivity: $\varepsilon(T) = \frac{E(T)}{E_b(T)}$
 - This is integrated over all directions and wavelengths
 - To simplify calculations, we assume ε is independent of λ (gray surface) and θ (diffuse surface)
 - This gives us the formula we already know: $E(T) \approx \varepsilon \sigma T^4$
- Consider a surface with some incident radiation G; some will be reflected, G_{ref} ; some will be absorbed.
 - Consider a summer and G_{abs} ; some will be transmitted, G_{tran} Define the absorptivity $\alpha = \frac{G_{abs}}{G}$, the reflectivity $\rho = \frac{G_{ref}}{g}$, and the transmittivity $\tau = \frac{G_{tran}}{G}$
 - For a general material these have to sum to 1; for an opaque material $\tau = 0$, so $\alpha + \rho = 1$
 - A blackbody has $\rho = 0$ and so $\alpha = 1$
 - We assume a gray body, where α, ρ, τ are independent of λ , and diffuse, where α, ρ, τ are independent of θ