Lecture 29, Nov 22, 2022

Semi-Infinite Solids

e Consider an object with surface temperature Ty and internal temperature T
— The skin layer is the outer layer of the solid where the temperature is a gradient; heat transfer is
meaningfully occurring
— The core is the part that’s relatively untouched by heat transfer so it has a roughly constant
temperature
— The actual temperature distribution would be an exponential, and the skin layer is the region
where the exponential is changing fast, whereas the core is the asymptote
— The dividing point is relatively subjective
o How does the skin depth § vary with time?
o Apply a semi-quantitative scaling analysis, with the goal of finding functional relationships
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T = 0 since at that point the heat transfer is done, so temperature is not changing much
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o ¢ scales with Vot
— This is not an exact equivalence, but now we know roughly how deep the heat transfer gets as
time goes on
e Consider a sphere with radius 7y, then heat transfer reaches the centre when § = ry; so we can devise a
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characteristic time ¢, = -2 for the heat transfer to reach the centre
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— If t < t. then we can treat the body as semi-infinite, i.e. infinite in one direction

e With a semi-infinite assumption we have an exact solution to the transient heat conduction problem
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— Using the scaling analysis to relate ¢ and =
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Define the similarity variable n = x
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— New boundary conditions: T(0) = T, T(c0) = T;
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Boundary conditions: T'(0) = ¢; = T5,T(0) = co-— +Ts = ¢co= ———=
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* erfc is the complementary error function
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— Differentiating the temperature profile we get Tt = = ge n
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— Plugging these in ¢ = —k(T; — T) - — -
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— Simplify to get a heat flux at the base of ¢ =
vrat
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e Contact of two semi-infinite bodies: joining together two semi-infinite materials A and B, applying the

same analysis as before
— We have TG,A = TS,B = Ts and q.s,A = QS,B
k(T =Tas) _ kp(Ts = Tp.
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* Notice this is constant
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When the time scale is such that the skin depth 6 = Vat <« L where L is the characteristic length, we
can treat a solid as semi-infinite, in which case
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where n =
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is the similarity variable; this results in a heat transfer at the base of
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This usually applies in cases of very low Bi, i.e. Reond > Reonv



	Lecture 29, Nov 22, 2022
	Semi-Infinite Solids


