Lecture 26, Nov 15, 2022

More On Finned Surfaces

- Why does longer hair not lead to more heat transfer?
 - -k for hair is very low, so longer hair leads to a negligible amount of additional heat transfer
 - The additional hair creates a boundary layer that effectively lowers h leading to less convection
- Consider cylindrical fins, increasing the diameter from d to 2d results in $\frac{Q'}{\dot{Q}} = 2^{\frac{3}{2}}$, an increase in the

total heat transfer

- For heat flux however we get $\frac{\dot{q}'}{\dot{q}} = 2^{-\frac{1}{2}}$, which is lower
- When designing a heat sink it might be better to have a larger number of smaller fins
 - * Note: Having fins that are too small might break up the flow and change h, leading to worse performance

Finite Length Fins

• Method 1: Consider an adiabatic tip (insulated tip)

= 0

- No heat transfer at the tip means the temperature at the tip must be constant

$$-\frac{\mathrm{d}T}{\mathrm{d}t} = \frac{\mathrm{d}\theta}{\mathrm{d}t}$$

$$dx \mid_{x=L} dx \mid_{x=L}$$

- $-\theta(x) = c_1 e^{ax} + c_2 e^{-ax} \implies \frac{\mathrm{d}\theta}{\mathrm{d}x} = c_1 a e^{ax} c_2 a e^{-ax}$ Plug in the initial condition, $0 = c_1 a e^{aL} c_1 a e^{-aL}$

- At $x = 0, \theta = \theta_b$, so $\theta_b = c_1 + c_2$ Solving yields $\frac{\theta(x)}{\theta_b} = \frac{\cosh(a(L-x))}{\cosh(aL)}$
- Solving for \dot{Q} using Fourier's law yields $\sqrt{hPkA_c}(T_s T_\infty) \tanh(aL)$
 - * Note $tanh(L) \to 1$ as $L \to \infty$, so this approaches the infinitely long fin equation as the fin gets longer
- Method 2: Use the "corrected length"
 - Have the convection coming out of the tip be idealized as coming out from the fin side
 - Imagine extending the fin by ΔL such that the additional side area ΔLP equals the size of the tip cross-section, now we can assume the tip is adiabatic
 - Corrected length is $L_c = L + \frac{A_c}{P}$
 - Use this L_c with the adiabatic tip solution for T, θ
 - Note this only works well if $A_c \ll L$ so the extension is minimal

Summary

For a fin with finite length L and an insulated tip, then

$$\frac{\theta(x)}{\theta_b} = \frac{T(x) - T_{\infty}}{T_b - T_{\infty}} = \frac{\cos(a(L-x))}{\cosh(aL)}$$

where

$$a = \sqrt{\frac{hP}{kA_c}}$$

and the total heat transfer through the fin is

$$\dot{Q} = \sqrt{hPkA_c(T_s - T_\infty) \tanh(aL)}$$

For fins with cross sectional area small relative to the length and non-adiabatic tip, use the corrected length $L_c = L + \frac{A_c}{P}$

Fin Efficiency

- The most "efficient" fin would have effectively infinite conductivity, so $T(x) = T_b$ for all x so that the convection along the fin is maximized
- In this case the heat transfer is just convection at uniform temperature, $Q_{max} = hA_{fin}(T_b T_\infty) = hPL(T_b T_\infty)$ ignoring the fin tip
- Define the fin efficiency as $\eta_{fin} = \frac{\dot{Q}}{\dot{Q}_{max}}$ - This is equal to $\frac{\sqrt{hPkA_c}(T_b - T_\infty)}{hPL(T_b - T_\infty)} = \frac{1}{aL}$ for an infinitely long fin - For an adiabatic tip $\frac{\sqrt{hPkA_c}(T_b - T_\infty) \tanh(aL)}{hPL(T_b - T_\infty)} = \frac{\tanh(aL)}{aL}$ - As L increases, η_{fin} approaches 0
- The fin effectiveness is defined as $\varepsilon_{fin} = \frac{\dot{Q}_{fin}}{\dot{Q}_0}$ where \dot{Q}_0 is the heat transfer without the fin, which would be $hA_c(T_b T_\infty)$
 - For an infinitely long fin $\varepsilon_{fin} = \sqrt{\frac{kP}{hA_c}}$
- To increase the fin effectiveness, maximize k and $\frac{P}{A_c}$
- When h goes up, the fin effectiveness goes down; fins are the most effective with low h
 e.g. if we have a boundary between air and water, it's better to have the fin on the air side since h in air is much lower
- Rule of thumb: Fins are worth it if $\varepsilon \geq 2$