Lecture 21, Oct 27, 2022

One Dimensional Heat Conduction Equation

• Consider heat conduction $x \to x + \Delta x$, surface area at x is A_x ; what is the temperature as a function of x?

•
$$\frac{dn}{dt} = mc_p \frac{\partial I}{\partial t} = \rho V c_p \frac{\partial I}{\partial t} = \rho c_p A dx \frac{\partial I}{\partial t}$$

• Energy balance: $\rho c_p A dx \frac{\partial T}{\partial t} = \dot{Q}_x - \dot{Q}_{x+\Delta x}$
- In terms of heat flux, $\dot{q}_x A_x - \dot{q}_{x+\Delta x} A_{x+\Delta x}$
 $- \rho c_p \frac{\partial T}{\partial t} = -\frac{1}{A} \left(\frac{\dot{q}_x A_x - \dot{q}_{x+\Delta x} A_{x+\Delta x}}{\Delta x} \right)$
- Take the limit $\Delta x \to 0$: $\rho c_p \frac{\partial T}{\partial t} = -\frac{1}{A} \frac{\partial (\dot{q}A)}{\partial x}$

Cartesian Coordinates

- Consider Cartesian coordinates, constant area, then we can simplify this as ρc_p ∂T/∂t = -∂∂/∂x
 Putting this into Fourier's law, q = -k dT/dx, we get ρc_p ∂T/∂t = -∂∂/∂x (-k∂T/∂x)
 With a constant k, we get ρc_p ∂T/∂t = k ∂²T/∂x²
 Alternatively ∂T/∂t = k/ρc_p ∂²T/∂x² = α ∂²T/∂x²
 α = k/ρc_p is the thermal diffusivity, with units of m²/s
 Higher k conducts heat well so the gradient is sharper
 ρc_p stores energy well, so a lot of heat can enter the system without changing the temperature much
 α = 1.11 × 10⁻⁴ m²/s for copper, α = 3.4 × 10⁻⁷ m²/s
 For steady state, ∂T/∂t = 0 so α ∂²T/∂x² = 0
 - Integrate this and we get that $\frac{\partial T}{\partial r}$ is a constant

Cylindrical Coordinates

• In the radial direction Fourier's law is $\dot{q} = -k \frac{\partial T}{\partial r}$

•
$$A = 2\pi rL$$

• $\rho c_p \frac{\partial T}{\partial t} = -\frac{1}{2\pi rL} \left(\frac{\partial}{\partial r} \left(2\pi rL \left(-k \frac{\partial T}{\partial r} \right) \right) \right) = \frac{k}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right)$
• $\frac{\partial T}{\partial t} = \frac{\alpha}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right)$
• For steady state, this simplifies to $\frac{\alpha}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) = 0 \implies r \frac{\partial T}{\partial r} =$

Spherical Coordinates

- $A = 4\pi r^2, \, \dot{q} = -k \frac{\partial T}{\partial r}$
- Doing the same derivation gets us $\rho c_p \frac{\partial T}{\partial t} = \frac{k}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right)$
- $\frac{\partial T}{\partial t} = \frac{\alpha}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right)$

0

Summary

- 1D heat flow equations:
 - Cartesian coordinates:

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$$

• Cylindrical coordinates (radial):

$$\frac{\partial T}{\partial t} = \frac{\alpha}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right)$$

• Spherical coordinates (radial):

$$\frac{\partial T}{\partial t} = \frac{\alpha}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right)$$

where α is the thermal diffusivity, $\alpha = \frac{k}{\rho c_p}$

In general,

$$\frac{\partial T}{\partial t} = \frac{\alpha}{r^n} \frac{\partial}{\partial r} \left(r^n \frac{\partial T}{\partial r} \right)$$

where n = 0 for Cartesian, n = 1 for cylindrical and n = 2 for spherical