Lecture 21, Oct 27, 2022

One Dimensional Heat Conduction Equation

e Consider heat conduction x — x + Ax, surface area at = is A,; what is the temperature as a function
of x?7
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o Energy balance: pcpAdxaa—t = Qs — Quins
— In terms of heat flux, ¢, Ay — §rtnz Azt
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— Take the limit Az — 0: pcp%—f _ 7%6(;14)
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Cartesian Coordinates
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e Consider Cartesian coordinates, constant area, then we can simplify this as pcpa = d
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— With a constant k, we get pcpa— = kg—Q
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o Putting this into Fourier’s law, ¢ = —k—, we get 'OCPE = ( k )

k
o o= — is the thermal diffusivity, with units of m?/s
PCp
— Higher k£ conducts heat well so the gradient is sharper

— pcp stores energy well, so a lot of heat can enter the system without changing the temperature

much
— a=1.11x10"*m?/s for copper, a = 3.4 x 107" m?/s
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e For steady state, T 0 so a@ :T
— Integrate this and we get that e is a constant
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Cylindrical Coordinates
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e In the radial direction Fourier’s law is ¢ = —k—
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For steady state, this simplifies to — — (
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Spherical Coordinates
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Doing the same derivation gets us pc, o 25, (r o )
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1D heat flow equations:

e Cartesian coordinates:
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o Cylindrical coordinates (radial):
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o Spherical coordinates (radial):
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where « is the thermal diffusivity, o = .
P
In general,
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where n = 0 for Cartesian, n = 1 for cylindrical and n = 2 for spherical
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