Lecture 20, Oct 25, 2022

Radiation

- Energy emitted by all matter in the form of electromagnetic waves - Thermal radiation is emitted by all bodies above absolute zero
- Typically volumetric, i.e. scales with volume of the body
 - However for opaque objects, radiation can only be emitted from the surface, so radiation scales with surface area
- Amount of radiation is a function of the surface temperature

Equation

Stefan-Boltzmann Law: The maximum amount of radiation that a surface can emit is

$$\dot{Q}_{max} = \sigma A T_s^4$$

where A is the surface area, T_s is the surface temperature, and σ is the Stefan-Boltzmann constant, $\sigma = 5.67 \times 10^{-8} \,\mathrm{W/m^2 \, K^4}$

- For a blackbody, the higher the temperature, the more the distribution of wavelengths shifts towards shorter wavelengths
 - A blackbody is a surface that emits the maximum amount of radiation
 - However real surfaces emit less radiation
- For a real surface, $\dot{Q} = \varepsilon \sigma A T^4$, where ε is the emissivity, $0 \le \varepsilon \le 1$
 - When $\varepsilon = 1$, the body is a blackbody
 - Otherwise it is a graybody
- Real objects have complex wavelength distributions that can be approximated by a graybody - A graybody has a constant emissivity less than 1
- e.g. the emissivity of black paint is 0.99; aluminum foil has an emissivity of 0.07
- Example: Liquid N₂ is kept inside a vacuum Dewar Flask
 - There are 2 layers of glass separated by a vacuum to prevent conduction and convection
 - The surfaces are coated with silver, which has a very low emissivity, to prevent radiation
- Radiation can also be absorbed when it's incident on a surface
 - Some radiation is absorbed and some is reflected for an opaque system
 - For a blackbody everything is absorbed
 - The fraction absorbed is defined as the *absorptivity* α , such that $\dot{Q}_{\text{absorbed}} = \alpha \dot{Q}_{\text{incident}}$
 - From conservation of energy, the amount reflected is $\dot{Q}_{\text{reflected}} = (1 \alpha)\dot{Q}_{\text{incident}}$
 - Kirchhoff's Law: $\alpha = \varepsilon$
- Special case: when a small surface is completely surrounded by a much larger surface, $\dot{Q}_{net} =$ $\varepsilon\sigma A_s(T_s^4 - T_{surr}^4)$

- This net radiation accounts for radiation absorbed and emitted

- Example: Chip with $\varepsilon = 0.6$ in a room with air/wall temperature 25°C, and $A_s = (0.015 \text{m})^2$
 - Natural (free) convection
 - * Estimate using a simple model $h = c(T_s T_\infty)^{\frac{1}{4}}$ where $c = 4.2 \,\mathrm{W/m^2 \, K^{5/4}}$
 - Forced convection with $h = 250 \text{W/m}^2 \text{K}$
 - What is the maximum power we can dissipate if the chip temperature must be less than $85^{\circ}C$?
 - * Natural convection: $\dot{Q}_{conv} = hA(T_s T_\infty) = cA(T_s T_\infty)^{\frac{1}{4}}(T_s T_\infty) = 0.158W$ * Radiation: $\dot{Q}_{rad} = \varepsilon A\sigma(T_s^4 T_{surr}^4) = 0.065W$

 - * Net heat transfer: $\dot{Q} = \dot{Q}_{conv} + \dot{Q}_{rad} = 0.223 W$
 - Note here the convective and radiative heat transfers are of similar magnitude Typically values for free convection is 3-20 W/m² K
 - * Forced convection: $\dot{Q}_{conv} = 3.375 W$
 - In this case the radiative heat transfer is only about 2% of the total heat transfer, so we can ignore it

For heat radiation:

• For an ideal blackbody:

 $\dot{Q} = \sigma A T^4$

• For a real object:

$$\dot{Q} = \varepsilon \sigma A T^4$$

• If a smaller surface is surrounded by a larger surface:

$$\dot{Q}_{net} = \varepsilon \sigma A_s (T_s^4 - T_{surr}^4)$$

where $\sigma = 5.67 \times 10^{-8} \,\mathrm{W/m^2 K^4}$ and ε is the surface emissivity, which is equal to α , the surface absorptivity

Thermal Conductivity Via Electrons

• Wiedemann-Franz Law: relates thermal and electrical conductivities of metals: $\frac{k}{\sigma} = LT$ where σ is the electrical conductivity, k is the thermal conductivity, L is the Lorenz number $L = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2 =$ $2.44 \times 10^{-8} \, V^2/K^2$

Heat Conduction

- Consider system volume, we can have 3D heat conduction $\dot{Q}_x, \dot{Q}_y, \dot{Q}_z$
 - Temperature is a function of position and time
- Heat conduction is a vector, $\vec{\dot{Q}} = \dot{Q}_x \hat{i} + \dot{Q}_y \hat{j} + \dot{Q}_z \hat{k}$ Use Fourier's law: $\dot{Q}_x = -kA_x \frac{\mathrm{d}T}{\mathrm{d}x}, \dot{Q}_y = -kA_y \frac{\mathrm{d}T}{\mathrm{d}y}, \dot{Q}_z = -kA_z \frac{\mathrm{d}T}{\mathrm{d}z}$ We will assume our system is 1 dimensional
- - This can happen if $\Delta x \ll \Delta y, \Delta z$ (e.g. a wall or through a plate), so $\frac{\mathrm{d}T}{\mathrm{d}x} \gg \frac{\mathrm{d}T}{\mathrm{d}y}, \frac{\mathrm{d}T}{\mathrm{d}z}$ and we can ignore the other two dimensions
 - This can also happen if we have insulated sides
 - Can also happen in cylindrical coordinates