Lecture 19, Oct 24, 2022

Conduction

- Heat transfer through a stationary medium as a result of a temperature difference
- Temperature T_1 on one side and T_2 on the other, resulting in a heat transfer \dot{Q}
- Conduction can occur in any material solid, liquid or gas, but without long range motion in the medium
- "Thermometers are speedometers for atoms"
 - In a solid, atoms can vibrate in their lattice
 - In a fluid, atoms and molecules can translate, molecules can vibrate and rotate
 - At higher temperature, atoms move faster; collisions between them transfer energy, which is heat transfer
- Conduction is modelled by *Fourier's Law*
 - Consider a temperature gradient T_1, T_2 ; somewhere in the middle we have T_0
 - Heat flux $\dot{q} = \frac{\dot{Q}}{A}$, with \dot{q}^+ from T_0 to T_2 and \dot{q}^- from T_0 to T_1 Define the average molecular velocity \bar{v} , number density n, and mean free path λ
 - * Over a distance of λ the direction of the molecules should be constant - Molecular energy is mcT(y) where m is the molecular mass, c is the specific heat capacity and
 - T(y) is temperature
 - The heat flux is defined as the number of molecules crossing a unit area per unit time, times the number energy per molecule
 - * $\dot{q} = n\bar{v}mcT(y)$
 - * The positive heat flux is $\dot{q}^+ = n\bar{v}mcT\left(-\frac{\lambda}{2}\right)$

 - * The negative flux is $\dot{q}^{-} = n\bar{v}mcT\left(\frac{\lambda}{2}\right)^{2}$ * The net heat flux is the difference, $n\bar{v}mc\left(T\left(-\frac{\lambda}{2}\right) T\left(\frac{\lambda}{2}\right)\right)$ $\begin{pmatrix} \lambda \\ \lambda \end{pmatrix} \begin{pmatrix} \lambda \\ dT \end{pmatrix}$

* We can approximate
$$T\left(-\frac{\lambda}{2}\right) - T\left(\frac{\lambda}{2}\right)$$
 as $-\lambda \frac{\mathrm{d}T}{\mathrm{d}y}$

$$\dot{q} = -n\bar{v}mc\lambda\frac{\mathrm{d}r}{\mathrm{d}y}$$

- The first 5 constants are all properties of the gas, which we define to be k, the thermal conductivity

Equation

Fourier's Law:

$$\dot{Q} = \dot{q}A = -kA\frac{\mathrm{d}T}{\mathrm{d}y}$$

where the thermal conductivity $k = n\bar{v}mc\lambda$, where n is the number density, \bar{v} is the velocity, m is the mass per molecule, c is the heat capacity and λ is the mean free path

In reality k = k(T, P), but we assume it to be constant

- Notes:
 - -k has units of Wm.K
 - The sign is negative the direction of heat conduction is opposite to the temperature gradient
 - The closer the atoms are, the better the thermal conductivity
 - * Typically k is the greatest for solids, then liquids, then gases
- In addition to transfer of kinetic energy, conduction can also occur through electron flow
 - This is why good electrical conductors are usually good thermal conductors

Convection

- Heat transfer between a solid surface and a moving fluid
- Two heat transfer mechanisms:
 - 1. Motion/collision of fluid molecules (conduction)
 - 2. Energy transfer due to bulk motion of fluid (advection)
- We care about fluid flow near surfaces
 - Near the surface of the solid, we have the *boundary layer*, where the fluid is severely slowed down
 - At the surface we have a no-slip condition, i.e. the fluid has zero velocity
 - The edge of the boundary later is defined as where $v = 0.99v_{free}$ where v_{free} is the free stream velocity
- When Re < 2000, the flow is laminar
- Temperature will also have a boundary layer the temperature as you approach the surface difference from that of the bulk $-\dot{Q}_{conv} = -kA\frac{\mathrm{d}T}{\mathrm{d}y}$, but $\frac{\mathrm{d}T}{\mathrm{d}y}$ is a complex function of fluid mechanics

 - We typically use Newton's Law of Cooling, $\dot{Q}_{conv} = hA(T_s T_{\infty})$, where h is the heat transfer coefficient in units of $\rm W/m^2\,\rm K$
 - * h is a function of fluid flow and properties
 - Thermal conductivity of the fluid
 - Surface geometry
 - Fluid velocity (higher average velocity leads to a higher h)

Equation

Newton's Law of Cooling: $\dot{Q}_{conv} = hA(T_s - T_{\infty})$