Lecture 18, Oct 20, 2022

Heat Transfer

- Thermodynamics typically only deals with equilibrium/quasi-equilibrium processes; in reality we care about kinetics (i.e. we need to worry about time), so the rate of heat transfer matters
- In heat transfer we deal with a lot of rates
- Various applications:
 - Insulating buildings, HVAC systems
 - Electronics cooling
 - Manufacturing/industry

Mechanisms of Heat Transfer

- 1. Conduction
 - Transfer of heat through a stationary medium, e.g. heat transfer through a metal, heat transfer through a window with an air gap
 - Driven by a temperature difference between two points in a stationary medium
- 2. Convection
 - Transfer of heat between a solid and surface and adjacent fluid that flows, e.g. moving air across a hot plate to cool it
 - Actually a combination of fluid mechanics and heat conduction
- 3. Radiation
 - Energy emitted by matter, e.g. the sun
 - Unlike the other forms, radiation can pass through a vacuum

Heat Flux

- Defined as the heat transfer rate per unit area
- Flux is defined as \$\frac{Q}{A}\$, with units of heat transfer rate per unit area (W/cm²)
 How do we reduce heat flux?
- - Reduce \dot{Q} (less heat generation) oftentimes not possible
 - Increase A (more area to dissipate heat)
- Size is important due to the square-cube law, the specific surface area $\frac{A}{V}$ goes down as an object gets larger
 - If heat generation is proportional to volume, now we have less area to transfer heat per unit of heat generation
 - Larger systems are generally harder to cool if heat generation is proportional to volume
- Heat sinks are designed to maximally increase surface area
- We can also increase the amount of airflow (increasing the effects of convection)
- Some fluids are more effective at convection, e.g. water cooling