Lecture 15, Oct 13, 2022

Phase Change in Constant Pressure Systems

- Consider a system with a liquid with temperature T and volume V; heat the system under constant pressure
 - Eventually we will reach T_{sat} , and the system has a combination of a vapour and liquid
 - Eventually all the liquid changes into vapour, and the vapour expands as an ideal gas
 - A plot of T against v will show an increasing line up to T_{sat} , then the temperature stays constant, but volume increases substantially, until all the liquid changes into vapour and the temperature increases again
- v_f is the specific volume of the saturated liquid, v at T_{sat} ; v_g is the specific volume of the saturated vapour, v when all the liquid changes into vapour
 - A higher pressure increases v_f but decreases v_q
 - If we keep increasing pressure, these will eventually meet; this is known as the *critical pressure*
 - At the critical pressure we no longer have a horizontal line in the middle but just an inflection point
- If we draw a line through all the v_f, v_g for various pressures, we get the vapour dome

Figure 1: Vapour dome on a T-v diagram

- Where $T < T_{sat}$ we have a subcooled liquid; where $T > T_{sat}$ we have a superheated vapour - In the middle, the horizontal line where $T = T_{sat}$, we have the saturated mixture
- Since $v_f = v_q$ at the critical point, we can regard it as one phase, as a supercritical fluid
 - Visually we no longer see any boundaries

Phase Change in Constant Temperature Systems

- Consider a system with only vapour at constant temperature; if we compress this system, we will get some liquid forming, and then eventually only liquid
- On a P-v diagram:
- We need two independent intensive properties to define the state of a system
 - If we have a mixture, the temperature and pressure are not independent, they are related by the Clausius-Clapeyron Equation (e.g. if we have boiling water at 1atm, we immediately know the pressure)
- Therefore we need one additional property to fix the state for mixtures Define a new property, the quality $x = \frac{m_g}{m}$ where m_g is the mass of the vapour and m is the mass of the mixture

 $-x = 0 \implies$ saturated liquid, $x = 1 \implies$ saturated vapour, 0 < x < 1 is a saturated mixture

Figure 2: Phase change in a constant temperature system

- The quality can be used to determine the volume
- Suppose the volume of a mixture is $V = mv = m_g v_g + m_f v_f \implies v = \frac{m_g}{m} v_g + \frac{m_f}{m} v_f$

 - $v = xv_g + (1-x)v_f$ This works for any other property $h = xh_g + (1-x)h_f = h_f + x(h_g h_f) = h_f + xh_{fg}$ where h_{fg} is the latent heat of vaporization