Lecture 13, Oct 6, 2022

Phase Change

- We assume a phase is either liquid, vapour, or solid and only deal with pure substances
- Most applications involve phase changes
 - e.g. cooling down a hot surface by blowing a fluid across the surface (surface cooling)
 - * If we used air, $c_p \approx 1 \text{kJ/kg K}$, but if we used water and get it to boil, the latent heat is approximately 2000kJ/kg
 - * If we can get the water to boil we can carry away orders of magnitude more heat
 - Steam turbines are also an example

Two-Phase Mixtures

- e.g. getting vapour bubbles when we heat water, or water carried along in a steam pipe
- How do we define properties for such a mixed system? We have neither an incompressible liquid nor an ideal gas

Phase Transitions

- Consider if we had a tank with a liquid and a vapour
 - The molecules in the liquid are much closer together; in the vapour molecules are much further apart
 - The liquid molecules have varying energies, some with enough energy to break loose (evaporation)
 - At the same time, the vapour molecules are hitting the surface of the liquid, some with low enough energy that they are re-captured (condensation)
 - Eventually we will reach a point where the rate of evaporation equals the rate of condensation, and we have *phase equilibrium*
- At phase equilibrium, the pressure of the system is constant; we define this as the *saturation pressure* P_{sat}
 - The temperature will also be constant, defined as the saturation temperature T_{sat}
- If we increase the temperature, more molecules end up in the vapour at phase equilibrium $(P_{sat}, T_{sat}\uparrow)$
- The rate of evaporation is proportional to the surface area
- If we consider the energy distribution of the molecules, the molecules evaporating have a higher energy. • so evaporation removes the most energetic molecules, resulting in cooling of a liquid
- To keep the temperature constant, we need to supply energy
 - This is defined as the *latent heat of evaporation*
- Consider a system with a liquid and vapour and consider an infinitesimal amount of mass δm going from liquid to vapour
 - Treat either the liquid or the vapour as an open system
 - How much is the energy change of this system?
 - Consider forcing the system to a constant temperature and pressure
 - Consider an infinitesimal δs being pushed into the system
 - The net change in internal energy (PE, KE change assumed 0) so $du = \delta q + \delta w + h dm$ * Enthalpy change includes flow rate - Entropy change is $ds = \frac{\delta q}{T} + \delta dm \implies \delta q = T ds - Ts dm$ - If we assume reversibility $\delta w = -P dV$

 - dU = Tds P dV + (h Ts) dm
- Energy change is due to 3 terms: heat transfer, work, and mass transfer

Definition

The Gibbs Energy G = H - TS and the specific Gibbs Energy $g = \frac{G}{m} = h - Ts$, also known as the chemical potential

A difference in the Gibbs energy results in mass transfer

• Then energy change is dU = T ds - P dV + g dm

• q is the increase in energy of an open system per unit mass added

Important

Gibbs equation for an open system:

$$\mathrm{d}s = \frac{\mathrm{d}U}{T} + \frac{P}{T}\mathrm{d}V - \frac{g}{T}\,\mathrm{d}m$$

Phase Equilibrium

- Consider an isolated system partially filled with saturated liquid and partially filled with saturated vapour
- What is the condition for phase equilibrium?
 - Start with the state principle: S = S(U, V, m)
 - * We have two components, the saturated vapour (subscript g) and the saturated liquid (subscript
 - Total entropy: $S = S_f(U_f, V_f, m_f) + S_g(U_g, V_g, m_g)$ At equilibrium $dS = 0 \implies dS_f + dS_g = 0$

 - $dS_f = \frac{dU_f}{T_f} + \frac{P_f}{T_f} dV_f \frac{g_f}{T_f} dm_f, dS_g = \frac{dU_g}{T_g} + \frac{P_g}{T_g} dV_g \frac{g_g}{T_g} dm_g$ Isolated system so $dU_f = -dU_g, dV_f = -dV_g, dm_f = -dm_g$

- Combining these two we get
$$dS = \left(\frac{1}{T_f} - \frac{1}{T_g}\right) dU_f + \left(\frac{P_f}{T_F} - \frac{P_g}{T_g}\right) dV_f + \left(\frac{g_f}{T_f} - \frac{g_g}{T_g}\right) dm_f = 0$$

- dU_f, dV_f, dm_f are all arbitrary (we never said how much the mass, volume, etc had to change), so each of the terms in the brackets are independently zero
- $T_f = T_g$ $\begin{cases} P_f = P_g \end{cases}$ - Therefore the equilibrium condition is: $g_f = g_g$
- $g_f = g_q$ is new at equilibrium there is no exchange of gas between two phases whose chemical potentials are the same
- g, the specific Gibbs energy, drives mass exchange
 - Assume T, P are constant but $g_f > g_g$, then $dS = -\frac{1}{T_f}(g_f g_g)dm_f > 0 \implies dm_f < 0$
 - If $g_f > g_g$ then there is mass transfer from the liquid to the vapour (evaporation)
 - Conversely if $g_q < g_f$ then there is mass transfer from vapour to liquid (condensation)
- If chemical potentials are unequal, then there will be mass exchange until chemical potentials are equal