Lecture 10 (Videos)

Postulate of Thermodynamics

- *Fundamental properties* are properties that cannot be explained in simpler terms:
 - By defining them we are postulating fundamental assumptions
- Fundamental properties (postulates):
 - Mass: matter exists
 - Volume: matter takes up space
 - Energy: matter moves and interacts
 - Entropy: interactions between pieces of matter lead to equilibrium
- Other properties:
 - Time is a fundamental property, but we don't care about it since we only deal with equilibrium states which are independent of time
 - All other properties can be expressed in terms of fundamental properties (including temperature and pressure)
- Four Postulates:
 - State Postulate: All isolated systems reach a state of equilibrium; the equilibrium state of a pure. simple compressible substance is completely described by its mass, volume, and internal energy * S = S(U, V, m)
 - First Law: The change in energy of a closed system equals the net energy transferred to it in the form of work and heat
 - * $Q + W = \Delta E$
 - Second Law: The entropy of an isolated system increases until equilibrium, at which point it remains constant
 - * $\Delta S \ge 0$
 - Third Law: The entropy of a pure substance in equilibrium at absolute zero is zero * S = 0 at T = 0
- Using these fundamental properties and postulates we can develop thermodynamics as a logical system

Defining Temperature

- T can be defined in terms of fundamental properties
- Consider system A and B at different temperatures, brought together to form system C; what is the condition for C to reach thermal equilibrium?
 - The two systems have m_A, V_A, m_B, V_B fixed, so only U_A, U_B may change

$$-S_C = S_A(U_A, V_A, m_A) + S_B(U_B, V_B, m_B) \implies \mathrm{d}S_C = \frac{\partial S_A}{\partial U_A} \mathrm{d}U_A + \frac{\partial S_B}{\partial U_B} \mathrm{d}U_B$$

- At equilibrium $dS_C = 0$ (entropy is constant)
- C is isolated so $U_C = U_A + U_B = \text{const} \implies \mathrm{d}U_A = -\mathrm{d}U_B$ Substituting this we have $\mathrm{d}S_C = \left(\frac{\partial S_A}{\partial U_A} \frac{\partial S_B}{\partial U_B}\right) \mathrm{d}U_A = 0$

- Therefore for thermal equilibrium we must have $\frac{\partial S_A}{\partial U_A} = \frac{\partial S_B}{\partial U_B}$ - what does this mean?

Definition

Temperature $T = \left(\frac{\partial U}{\partial S}\right)_{m V}$

- The equilibrium condition becomes $\frac{\partial S_A}{\partial U_A} = \frac{\partial S_B}{\partial U_B} \implies \frac{1}{T_A} = \frac{1}{T_B} \implies T_A = T_B$
 - This satisfies our understanding of temperature since the system is at thermal equilibrium when temperatures are the same

- If $T_A > T_B$ then $dS_C = \left(\frac{1}{T_A} \frac{1}{T_B}\right) dU_A > 0$ must be true; to satisfy this $dU_A < 0$
 - This means energy of system \hat{A} decreases while energy of B increases
 - This matches our understanding since we have heat transfer from A to B

Defining Pressure

- Consider a container with two compartments A and B separated by a locked piston, initially with different pressures; when the piston is removed the system goes to equilibrium; what is the equilibrium condition?
 - $S_C = S_A(U_A, V_A, m_A) + S_B(U_B, V_B, m_B) \implies dS_C = \frac{\partial S_A}{\partial U_A} dU_A + \frac{\partial S_A}{\partial V_A} dV_A + \frac{\partial S_B}{\partial U_B} dU_B + \frac{\partial S_B}{\partial V_B} dV_B$ $\text{ Energy and volume are constant so } dU_A = -dU_B, dV_A = -dV_B$ $dS_C U = \left(\frac{\partial S_A}{\partial U_A} \frac{\partial S_B}{\partial U_B}\right) dU_A + \left(\frac{\partial S_A}{\partial V_A} \frac{\partial S_B}{\partial V_B}\right) dV_A = \left(\frac{1}{T_A} \frac{\partial 1}{\partial T_B}\right) dU_A + \left(\frac{\partial S_A}{\partial V_A} \frac{\partial S_B}{\partial V_B}\right) dV_A$ $\text{ For a system at equilibrium } T_A = T_B \text{ so } \frac{\partial S_A}{\partial V_A} = \frac{\partial S_B}{\partial V_B}$

Definition

The thermodynamic pressure
$$P$$
, such that $\frac{P}{T} = \left(\frac{\partial S}{\partial V}\right)_{m,U} \implies P = T\left(\frac{\partial S}{\partial V}\right)_{m,U}$

- Substituting this back in we have $dS_C = \left(\frac{1}{T_A} \frac{1}{T_B}\right) dU_A + \left(\frac{P_A}{T_A} \frac{P_B}{T_B}\right) dV_A$

 - At equilibrium we would require $T_A = T_B, P_A = P_B$ If the system is not at equilibrium (assume $T_A = T_B = T$, but $P_A > P_B$), then $dS_C = \left(\frac{P_A}{T} \frac{P_B}{T}\right) dV_A > 0 \implies (P_A P_B) dV_A > 0 \implies dV_A > 0$ This means system A, at higher pressure, expands while system B contracts, which matches our
 - understanding of pressure

Calculating Entropy Changes

• In terms of intensive properties
$$\frac{1}{T} = \left(\frac{\partial s}{\partial u}\right)_v, \frac{P}{T} = \left(\frac{\partial s}{\partial v}\right)_u$$

• $s = s(u, v) \implies ds = \left(\frac{\partial s}{\partial u}\right)_v du + \frac{\partial s}{\partial v} u dv = \frac{1}{T} du + \frac{P}{T} dv$

Important

The Gibbs Equation: $ds = \frac{1}{T}du + \frac{P}{T}dv$

Alternative form: $ds = \frac{dh}{T} - \frac{v}{T}dP$

- This gives us the change in entropy as a function of things we can easily measure
- For an impressible substance, $dv = 0 \implies ds = \frac{1}{T} du$ and $c_p = c_p = c$ and du = c(T) dT, so $ds = c(T) \frac{dT}{dT}$

$$-\Delta s = s_2 - s_1 = \int_{T_1}^{T_2} c(T) \frac{\mathrm{d}T}{T}$$

$$\begin{aligned} -\Delta s &= c_{avg} \ln \frac{T_2}{T_1} \\ -\operatorname{Notice} \Delta s &= c_{avg} (\ln T_2 - \ln T_1), \text{ compare to } \Delta u = c_{avg} (T_2 - T_1) \end{aligned}$$
• For an ideal gas $du = c_v (T) dT$ and $\frac{P}{T} = \frac{R}{v} \implies ds = \frac{c_v (T)}{T} dT + R \frac{dv}{v} \\ -\Delta s &= \int_{T_1}^{T_2} c_v (T) \frac{dT}{T} + \int_{v_1}^{v_2} R \frac{dv}{v} \\ -\Delta s &= c_v \ln \frac{T_2}{T_1} + R \ln \frac{v_2}{v_1} \\ -\operatorname{Notice} \Delta s &= \Delta s(T, v) \\ -\operatorname{This gives} \Delta s &= \Delta s(T, v) \\ -\operatorname{This gives} \Delta s &= \Delta s(P, v) = c_v \ln \frac{T_2}{P_1} + P_2 \ln \frac{v_2}{v_1} \\ -\operatorname{This gives} \Delta s &= \Delta s(P, v) = c_v \ln \frac{P_2}{P_1} + c_p \ln \frac{v_2}{v_1} \\ -\operatorname{This gives} \Delta s &= \Delta s(P, v) = c_v \ln \frac{P_2}{P_1} + c_p \ln \frac{v_2}{v_1} \\ -\operatorname{Notec} \Delta s(P, T): T ds &= du + P dv, h = u + P v \implies dh = du + P dv + v dP \implies du + P dv = dh - v dP \\ &* Alternative form of the Gibbs equation: ds + \frac{dh}{T} - \frac{v}{T} dP \\ -\operatorname{For an ideal gas} dh &= c_p (T) dT \text{ and } \frac{v}{T} = \frac{R}{P} \text{ so } ds = \frac{c_p (T)}{T} dT - R \frac{dP}{P} \\ &* \Delta s(P, T) &= c_p \ln \frac{T_2}{T_1} - R \ln \frac{P_2}{P_1} \end{aligned}$

For constant specific heat, for an ideal gas: $T_{r_{i}}$

•
$$\Delta s(T, v) = c_v \ln \frac{T_2}{T_1} + R \ln \frac{v_2}{v_1}$$

• $\Delta s(P, v) = c_v \ln \frac{P_2}{P_1} + c_p \ln \frac{v_2}{v_1}$
• $\Delta s(P, T) = c_p \ln \frac{T_2}{T_1} - R \ln \frac{P_2}{P_1}$

For an incompressible substance, $\Delta s = c_{avg} \ln \frac{T_2}{T_1}$

- For variable specific heat, consider $\int_{T_1}^{T_2} c_p(T) \frac{\mathrm{d}T}{T} = \int_{T_{ref}}^{T_2} c_p(T) \frac{\mathrm{d}T}{T} \int_{T_{ref}}^{T_1} c_p(T) \frac{\mathrm{d}T}{T}$
- Define $s^0(T_0) = \int_{T_{ref}}^{T_0} c_p(T) \frac{dT}{T}$, so that we can instead use $s^0(T_2) s^0(T_1)$ instead of $c_v \ln \frac{T_2}{T_1}$ whenever specific heat is nonconstant
 - Air tables list these values of s^0 Usually $s^0 = 0$ at $T_{ref} = 0$ K

Important

When c_p is nonconstant, instead of $c_p \ln \frac{T_2}{T_1}$, use $s^0(T_2) - s^0(T_1)$