
Lecture 10 (Videos)
Postulate of Thermodynamics

• Fundamental properties are properties that cannot be explained in simpler terms:
– By defining them we are postulating fundamental assumptions

• Fundamental properties (postulates):
– Mass: matter exists
– Volume: matter takes up space
– Energy: matter moves and interacts
– Entropy: interactions between pieces of matter lead to equilibrium

• Other properties:
– Time is a fundamental property, but we don’t care about it since we only deal with equilibrium

states which are independent of time
– All other properties can be expressed in terms of fundamental properties (including temperature

and pressure)
• Four Postulates:

– State Postulate: All isolated systems reach a state of equilibrium; the equilibrium state of a pure,
simple compressible substance is completely described by its mass, volume, and internal energy

* S = S(U, V, m)
– First Law: The change in energy of a closed system equals the net energy transferred to it in the

form of work and heat
* Q + W = ∆E

– Second Law: The entropy of an isolated system increases until equilibrium, at which point it
remains constant

* ∆S ≥ 0
– Third Law: The entropy of a pure substance in equilibrium at absolute zero is zero

* S = 0 at T = 0
• Using these fundamental properties and postulates we can develop thermodynamics as a logical system

Defining Temperature
• T can be defined in terms of fundamental properties
• Consider system A and B at different temperatures, brought together to form system C; what is the

condition for C to reach thermal equilibrium?
– The two systems have mA, VA, mB , VB fixed, so only UA, UB may change
– SC = SA(UA, VA, mA) + SB(UB , VB , mB) =⇒ dSC = ∂SA

∂UA
dUA + ∂SB

∂UB
dUB

– At equilibrium dSC = 0 (entropy is constant)
– C is isolated so UC = UA + UB = const =⇒ dUA = −dUB

– Substituting this we have dSC =
(

∂SA

∂UA
− ∂SB

∂UB

)
dUA = 0

– Therefore for thermal equilibrium we must have ∂SA

∂UA
= ∂SB

∂UB
– what does this mean?

Definition

Temperature T =
(

∂U

∂S

)
m,V

• The equilibrium condition becomes ∂SA

∂UA
= ∂SB

∂UB
=⇒ 1

TA
= 1

TB
=⇒ TA = TB

– This satisfies our understanding of temperature since the system is at thermal equilibrium when
temperatures are the same
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• If TA > TB then dSC =
(

1
TA

− 1
TB

)
dUA > 0 must be true; to satisfy this dUA < 0

– This means energy of system A decreases while energy of B increases
– This matches our understanding since we have heat transfer from A to B

Defining Pressure
• Consider a container with two compartments A and B separated by a locked piston, initially with

different pressures; when the piston is removed the system goes to equilibrium; what is the equilibrium
condition?

– SC = SA(UA, VA, mA)+SB(UB , VB , mB) =⇒ dSC = ∂SA

∂UA
dUA + ∂SA

∂VA
dVA + ∂SB

∂UB
dUB + ∂SB

∂VB
dVB

– Energy and volume are constant so dUA = −dUB , dVA = −dVB

– dSCU =
(

∂SA

∂UA
− ∂SB

∂UB

)
dUA +

(
∂SA

∂VA
− ∂SB

∂VB

)
dVA =

(
1

TA
− ∂1

∂TB

)
dUA +

(
∂SA

∂VA
− ∂SB

∂VB

)
dVA

– For a system at equilibrium TA = TB so ∂SA

∂VA
= ∂SB

∂VB

Definition

The thermodynamic pressure P , such that P

T
=

(
∂S

∂V

)
m,U

=⇒ P = T

(
∂S

∂V

)
m,U

• Substituting this back in we have dSC =
(

1
TA

− 1
TB

)
dUA +

(
PA

TA
− PB

TB

)
dVA

– At equilibrium we would require TA = TB , PA = PB

– If the system is not at equilibrium (assume TA = TB = T , but PA > PB), then dSC =(
PA

T
− PB

T

)
dVA > 0 =⇒ (PA − PB)dVA > 0 =⇒ dVA > 0

– This means system A, at higher pressure, expands while system B contracts, which matches our
understanding of pressure

Calculating Entropy Changes

• In terms of intensive properties 1
T

=
(

∂s

∂u

)
v

,
P

T
=

(
∂s

∂v

)
u

• s = s(u, v) =⇒ ds =
(

∂s

∂u

)
v

du + ∂s

∂v
udv = 1

T
du + P

T
dv

Important

The Gibbs Equation: ds = 1
T

du + P

T
dv

Alternative form: ds = dh

T
− v

T
dP

• This gives us the change in entropy as a function of things we can easily measure
• For an impressible substance, dv = 0 =⇒ ds = 1

T
du and cp = cp = c and du = c(T )dT , so

ds = c(T )dT

T

– ∆s = s2 − s1 =
� T2

T1

c(T )dT

T
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– ∆s = cavg ln T2

T1
– Notice ∆s = cavg(ln T2 − ln T1), compare to ∆u = cavg(T2 − T1)

• For an ideal gas du = cv(T )dT and P

T
= R

v
=⇒ ds = cv(T )

T
dT + R

dv

v

– ∆s =
� T2

T1

cv(T )dT

T
+
� v2

v1

R
dv

v

– Assume constant cv, then ∆s = cv ln T2

T1
+ R ln v2

v1
– This gives ∆s = ∆s(T, v)
– From the ideal gas equation T2

T1
= P2

P1

v2

v1
so ∆s = cv ln P2

P1
+ (cv + R) ln V2

V1

– This gives ∆s = ∆s(P, v) = cv ln P2

P1
+ cp ln v2

v1
– For ∆s(P, T ): Tds = du + Pdv, h = u + Pv =⇒ dh = du + Pdv + vdP =⇒ du + Pdv =

dh − vdP =⇒ Tds = dh − vdP

* Alternative form of the Gibbs equation: ds + dh

T
− v

T
dP

– For an ideal gas dh = cp(T )dT and v

T
= R

P
so ds = cp(T )

T
dT − R

dP

P

* ∆s(P, T ) = cp ln T2

T1
− R ln P2

P1

Summary

For constant specific heat, for an ideal gas:
• ∆s(T, v) = cv ln T2

T1
+ R ln v2

v1

• ∆s(P, v) = cv ln P2

P1
+ cp ln v2

v1

• ∆s(P, T ) = cp ln T2

T1
− R ln P2

P1

For an incompressible substance, ∆s = cavg ln T2

T1

• For variable specific heat, consider
� T2

T1

cp(T )dT

T
=
� T2

Tref

cp(T )dT

T
−
� T1

Tref

cp(T )dT

T

• Define s0(T0) =
� T0

Tref

cp(T )dT

T
, so that we can instead use s0(T2) − s0(T1) instead of cv ln T2

T1
whenever

specific heat is nonconstant
– Air tables list these values of s0

– Usually s0 = 0 at Tref = 0K

Important

When cp is nonconstant, instead of cp ln T2

T1
, use s0(T2) − s0(T1)
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