Lecture 10 (Videos)

Postulate of Thermodynamics

e Fundamental properties are properties that cannot be explained in simpler terms:
— By defining them we are postulating fundamental assumptions
o Fundamental properties (postulates):
— Mass: matter exists
— Volume: matter takes up space
— Energy: matter moves and interacts
— Entropy: interactions between pieces of matter lead to equilibrium
e Other properties:
— Time is a fundamental property, but we don’t care about it since we only deal with equilibrium
states which are independent of time
— All other properties can be expressed in terms of fundamental properties (including temperature
and pressure)
o Four Postulates:
— State Postulate: All isolated systems reach a state of equilibrium; the equilibrium state of a pure,
simple compressible substance is completely described by its mass, volume, and internal energy
* §=58(U,V,m)
— First Law: The change in energy of a closed system equals the net energy transferred to it in the
form of work and heat
*Q+W=AFE
— Second Law: The entropy of an isolated system increases until equilibrium, at which point it
remains constant
*AS >0
— Third Law: The entropy of a pure substance in equilibrium at absolute zero is zero
*S=0atT=0
e Using these fundamental properties and postulates we can develop thermodynamics as a logical system

Defining Temperature

e T can be defined in terms of fundamental properties
e Consider system A and B at different temperatures, brought together to form system C'; what is the
condition for C' to reach thermal equilibrium?

— The two systems have m 4, Va,mp, Vg fixed, so only Ua,Up may change

oS oS

~ S = Sa(Ua,Va,ma) + Sp(Up, Vg, mp) = dS¢ = —=dU, + —2-dUp
U 4 oUp

— At equilibrium dS¢ = 0 (entropy is constant)

— Cisisolated so Ug = Uy +Up = const = dU4 = —dUp

— Substituting this we have dS¢ = <% — g%) dUy, =0
A B
0S4 0Sp

— Therefore for thermal equilibrium we must have = —— — what does this mean?

oUs  0Ug

Temperature T = (g—g) .

0S4 0Sp 1 1
U, 0Ug Ty Tp ATIE
— This satisfies our understanding of temperature since the system is at thermal equilibrium when

temperatures are the same

e The equilibrium condition becomes



1 1
o If Ty >Tp then dS¢c = (T— — T_> dU,4 > 0 must be true; to satisfy this dU4 < 0
A B
— This means energy of system A decreases while energy of B increases

— This matches our understanding since we have heat transfer from A to B
Defining Pressure

o Consider a container with two compartments A and B separated by a locked piston, initially with
different pressures; when the piston is removed the system goes to equilibrium; what is the equilibrium

condition? DS 4 9S4 0Sg 0SB
~ S =8A(Ua,Va,ma)+Sp(Up, Vg, mp) = dSc¢ = 6UAdUA+8VAdVA+8UBdUB+8VBdVB
— Energy and volume are constant so dUs = —dUp,dV4 = —dVp
- dScU = <% - %) dUa+ <% - %) dVa = (% N 68?13) dUa+ (% - %) va
— For a system at equilibrium T4 = T'’s so % = g%

P
The thermodynamic pressure P, such that — = <§> — P=T <§)
m,U

T

1 1 P P,
¢ Substituting this back in we have dS¢c = (T_A — T_B) dU + (T_j — T—i) dVyu

— At equilibrium we would require T4 = Tg, P4 = Pp
— If the system is not at equilibrium (assume T4 = Tp = T, but P4 > Pg), then dS¢c =
P P
<?’“—?B>dv,4 >0 = (Pa—Pg)dVs >0 = dV4 >0
— This means system A, at higher pressure, expands while system B contracts, which matches our

understanding of pressure

Calculating Entropy Changes

In t £ intensi i 1 [(0s P (0s
n terms of intensive properties . = { = o1 \a),
0Os 0Os 1 r
o s=s(u,v) = ds= (a)vdu—l— %udv = fdu—i— Tdv

Important

1 P
The Gibbs Equation: ds = Tdu + Tdv

dh v
Alt tive form: ds = — — —=dP
ernative form: ds = -+ —

o This gives us the change in entropy as a function of things we can easily measure

o For an impressible substance, dv = 0 = ds = Tdu and ¢, = ¢, = ¢ and du = ¢(T)dT, so

dT
ds = C(T)? ;
2
— As =589 — 51 :/ c(T)g
T T
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— As = CaqugIn T
1
— Notice As = ¢qpg(InT5 —InTY), compare to Au = Caupg(To — T1)
P T
o For an ideal gas du = ¢,(T)dT and == E ds = Cul )dT + R—
v

T:
2 T
fAs:/ (T )dl +/ R@
T T V1

T
— Assume constant ¢, then As = ¢, In — T, + RIn —

vy

— This gives As = As(T,v)
T P. P, V
— From the ideal gas equation ?j = Fj% so As =c¢,In F? + (¢y + R) In Vi

P
— This gives As = As(P,v) = ¢, In — 2 +¢p In 22

U1
For As(P,T): Tds = du+ Pdv, h = u+ Pv = dh =du+ Pdv+vdP = du+ Pdv =
dh —vdP = Tds =dh —vdP

dh
* Alternative form of the Gibbs equation: ds + T~ %dP
) v R (T) dpP
— For an ideal gas dh = cp( )dT and 7= p O ds = =—=dT — R?
* As(P, T)—cpln — Rln—
T P1
For constant specific heat, for an ideal gas:
T
o As(T,v) —thlT + Rln U—l
P
o As(Pv)=c, ln —|— Cp In 22
vy
Py
o As(P,T)= cpln Tl - RIHE
. ) P
For an incompressible substance, As = ¢qy4 In T
1

2 ar " ar ™" ar
« For variable specific heat, consider / p(T)—= = / p(T)—= — / ep(T) =
T T Tref T TT@f T

To dr T:
o Define s°(Tp) = / cp(T)T7 so that we can instead use s°(T3) — s°(T}) instead of ¢, In ?2 whenever
Tref 1
specific heat is nonconstant
— Air tables list these values of s°

— Usually s° =0 at Trey = 0K

T
When ¢, is nonconstant, instead of ¢, In ?2, use s(Ty) — s°(T1)
1
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