Lecture 9, Sep 23, 2022

Cylindrical Coordinates

- Uses triplets of (r,θ,z)
 - z is the distance from the $r\theta$ plane, same as Cartesian z
 - $-r, \theta$ work like polar coordinates
 - $\int x = r \cos \theta$
- Conversion: $\begin{cases} y = r \sin \theta \\ z = z \end{cases}$

Important

If f(x, y, z) is continuous in

$$Q = \{ (x, y, z) \mid (x, y) \in R, u_1(x, y) \le z \le u_2(x, y) \}$$

where

$$R = \{ (r, \theta) \mid \alpha \le \theta \le \beta, h_1(\theta) \le r \le h_2(\theta) \}$$

then

$$\iiint_Q f(x, y, z) \, \mathrm{d}V = \iint_R \int_{u_1(x, y)}^{u_2(x, y)} f(x, y, z) \, \mathrm{d}z \, \mathrm{d}A$$
$$= \int_\alpha^\beta \int_{h_1(\theta)}^{h_2(\theta)} \int_{u_1(r\cos\theta, r\sin\theta)}^{u_2(r\cos\theta, r\sin\theta)} f(r\cos\theta, r\sin\theta, z) \, r \, \mathrm{d}z \, \mathrm{d}r \, \mathrm{d}\theta$$

• Note in cylindrical coordinates, $dV = r dz dr d\theta$

Spherical Coordinates

- Uses triplets of (ρ, θ, ϕ)
 - ρ is the distance from the origin, always non-negative
 - $-\phi$ is the angle from the z axis
 - * ϕ is between 0 (straight up) and π (straight down)
 - $-\theta$ is the angle from the x axis, in the xy plane

$$x = \rho \sin \phi \cos \theta$$

- Conversion: $\begin{cases} y = \rho \sin \phi \sin \theta \end{cases}$
 - $z = \rho \cos \phi$
 - $-\rho\sin\theta$ is r in the xy plane
- Constant ρ : sphere
- Constant θ : vertical plane
- Constant ϕ : cone
- Therefore in spherical coordinates $dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$

Important

Triple integration in spherical coordinates:

$$\iiint_Q f(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \iiint_{Q'} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \, \rho^2 \sin \phi \, \mathrm{d}\rho \, \mathrm{d}\phi \, \mathrm{d}\phi \, \mathrm{d}\phi$$