Lecture 6, Sep 16, 2022

Surface Area

- Given z = f(x, y) on region R, how do we find its surface area?
- Divide the surface into many subregions S_i with area ΔS_i
- For each subregion draw a tangent plane, the elementary region has area ΔT_i (think of a disco ball)
- S ≈ ∑ⁿ_{i=1} ΔT_i ⇒ S = lim_{|P||→0}∑ⁿ_{i=1} ΔT_i ⇒ S = ∬_S dT
 Project subregion T_i with area ΔT_i down to R and get a rectangular subregion R_i with area ΔA_i =
- $\Delta y_i \Delta x_i$
 - $-\Delta T_i$ is a parallelogram
 - The two vectors that define this parallelogram are $\vec{a_i}, b_i$
- The two vectors that define this parallelogram are \vec{a}_i, b_i \vec{a}_i has slope $f_x(x_i, y_i), \vec{b}_i$ has slope $f_y(x_i, y_i) \implies \vec{a}_i = \begin{bmatrix} \Delta x_i \\ 0 \\ f_x(x_i, y_i)\Delta x_i \end{bmatrix}, \vec{b}_i = \begin{bmatrix} 0 \\ \Delta y_i \\ f_y(x_i, y_i)\Delta y_i \end{bmatrix}$ Cross product to get area: $\vec{a}_i \times \vec{b}_i = \begin{bmatrix} -f_x(x_i, y_i) \\ -f_y(x_i, y_i) \\ 1 \end{bmatrix} \Delta x_i \Delta y_i$ $\Delta T_i = \|\vec{a}_i \times \vec{b}_i\| = \sqrt{(f_x(x, y))^2 + (f_y(x, y))^2 + 1} \Delta x_i \Delta y_i$, and now we can integrate to get surface area

Important

The surface area of z = f(x, y) on R is

$$S = \iint_{R} \sqrt{(f_{x}(x,y))^{2} + (f_{y}(x,y))^{2} + 1} \, \mathrm{d}A$$