
Lecture 36, Dec 2, 2022
Open Channel Flows

• Flows of liquid with free surface exposed to atmospheric pressure pressure
– This free surface introduces an extra degree of freedom
– This allows aves to form

• Waves move at a speed of c0, which is not the same as the velocity of the individual fluid particles
• We want a control volume that moves with the wavefront

– Assuming a wave height much less than the liquid height, δy ≪ y, then c0 = √
gy

– The wave speed depends on the liquid depth; this is why tsunamis form, since waver level is very
deep in the ocean

• For open channel flows, we define the Froude number Fr = V
√

gy
, the ratio of the fluid speed divided by

the wave speed; the Froude number governs the character of the flow in open channels
– Fr < 1 is subcritical flow

* The waves drift due to the velocity, but the wave still moves both down and upstream since
the wave is able to travel faster than the fluid

– Fr = 1 is critical flow
* The wave velocity matches the fluid velocity, so the wavefront stays in place

– Fr > 1 is supercritical flow
* The waves only move downstream since the fluid pushes it down faster than it can go upstream

• Open channel flows are similar to compressible flows, in which the Mach number is used
– In supercritical flow the wavefront is analogous to the shockwave in supersonic flow

Compressible Flows
• Incompressibility is always only an approximation

– The constant density assumption greatly simplifies problems
– This is valid in a slow moving fluid

• In compressible flows we need fluid dynamics and thermodynamics
• A weak pressure wave is defined as a sound wave

– The pressure wave is travelling at the speed of sound, but not the fluid particles
• Like in the open channel flow we again look at a control volume moving with the wavefront and assume

1D travel
– Using continuity and momentum we get c2 =

(
∂p

∂ρ

)
s

* Note this is at constant entropy, because the disturbance is very small and we’re not adding
heat

• For an ideal gas, P2

P1
=

(
ρ2

ρ1

)γ

=
(

T2

T1

) γ
γ−1

– p

ργ
is constant

– c =
√

γRT for an ideal gas

• More generally for any fluid we can use the bulk modulus and get c =

√
Ev

ρ

• In a truly incompressible medium, Ev → ∞ which means c → ∞
• The Mach number is defined as M = V

c
– Note this is a variable from point to point
– We generally use M∞, the free stream Mach number

• We can categorize the flow based on Mach number:
– M∞ ≤ 0.3 means the flow is incompressible
– M∞ > 0.3 means the flow is incompressible
– 0.8 ≤ M∞ ≤ 1 gives transonic flow
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– M∞ ≥ 5 gives hypersonic flow

Simplified Compressible Flows
• We will assume steady, 1D, isentropic (adiabatic and inviscid), and compressible flow
• ρV A is constant, so we have dρ

ρ
+ dA

A
+ dV

V
= 0 as an alternative form of the continuity equation

• Pressure work can be derived as p1A1V1 − p2A2V2

• Using RTT on energy balance, we get the compressible Bernoulli equation: p

ρ
+ e + V 2

2 + gz = const
where e is the total internal energy per unit mass

– In terms of enthalpy h + V 2

2 + gz = const
• For high-speed flows, potential energy of the fluid is negligible; if we imagine that we can adiabatically

slow the fluid to zero, then we get h + v2

2 = h0, the stagnation enthalpy or total enthalpy
– Kinetic energy converts to enthalpy
– All the kinetic energy goes to an increase in internal energy (temperature) and pressure energy

• We can find properties of the fluid at stagnation:

– cp(T − T0) + V 2

2 = 0 =⇒ T0 = T + V 2

2cp

– T is the static temperature, the regular temperature we know

– V 2

2cp
is the dynamic temperature, the temperature rise in the stagnation process

– T0 is the stagnation or total temperature, the temperature we get when we bring the fluid to a
stop adiabatically

– For a very high speed flow we have T0 > T and kinetic energy is important, but for low speed
flows we have T0 ≈ T since kinetic energy is negligible

• We can get properties such as the stagnation temperature in terms of the mach number (formula in
notes)

– At very high velocities, the stagnation temperature can be significantly higher than the free stream
temperature

– Shockwaves will dissipate some of this temperature
• The rule of thumb is we must take compressibility into account when the density changes are greater

than 5%
– If we use the formula of ρ0

ρ
from M , we get a mach number of about 0.3 as the critical threshold

Variation of Fluid Velocity With Flow Area

• Using the continuity equation and conservation of energy we can derive dA

A
= −dV

V
(1 − M2)

– In subsonic flow, we get dA

dV
< 0 – velocity decreases with increasing area

* We know this from the incompressible Bernoulli equation
– In supersonic flow, dA

dV
> 0 – velocity increases with increasing area

* Density rapidly decreases so the air fills the entire channel
– In sonic flow, dA

dV
= 0 which means dA = 0

* If we have area as a function of x, then we have dA

dx
= 0, which means the point at which we

have sonic flow must be either a point of maximum or minimum area
* Since dA

dV
< 0 for subsonic flow, the only way we can get this is to have a converging-diverging

duct; then we get M = 1 at the minimum point of the duct (the throat)
* After the throat, the flow can accelerate to supersonic (this depends on the duct design and

the pressure after the duct)
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