Lecture 36, Dec 2, 2022

Open Channel Flows

e Flows of liquid with free surface exposed to atmospheric pressure pressure
— This free surface introduces an extra degree of freedom
— This allows aves to form
e Waves move at a speed of ¢y, which is not the same as the velocity of the individual fluid particles
e We want a control volume that moves with the wavefront
— Assuming a wave height much less than the liquid height, dy < y, then ¢y = /gy
— The wave speed depends on the liquid depth; this is why tsunamis form, since waver level is very
deep in the ocean
e For open channel flows, we define the Froude number Fr = L, the ratio of the fluid speed divided by

VY
the wave speed; the Froude number governs the character of the flow in open channels

— Fr < 1 is subcritical flow
* The waves drift due to the velocity, but the wave still moves both down and upstream since
the wave is able to travel faster than the fluid
— Fr =1 is critical flow
* The wave velocity matches the fluid velocity, so the wavefront stays in place
— Fr > 1 is supercritical flow
* The waves only move downstream since the fluid pushes it down faster than it can go upstream
¢ Open channel flows are similar to compressible flows, in which the Mach number is used
— In supercritical flow the wavefront is analogous to the shockwave in supersonic flow

Compressible Flows

e Incompressibility is always only an approximation
— The constant density assumption greatly simplifies problems
— This is valid in a slow moving fluid
e In compressible flows we need fluid dynamics and thermodynamics
e A weak pressure wave is defined as a sound wave
— The pressure wave is travelling at the speed of sound, but not the fluid particles
e Like in the open channel flow we again look at a control volume moving with the wavefront and assume
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— Using continuity and momentum we get 2= ( 8p>
P/ s
* Note this is at constant entropy, because the disturbance is very small and we're not adding
heat 5
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— ¢ = +/vRT for an ideal gas
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« More generally for any fluid we can use the bulk modulus and get ¢ = 4 [ —
p

e In a truly incompressible medium, E, — oo which means ¢ — oo

¢ The Mach number is defined as M = K

— Note this is a variable from pointcto point

— We generally use M, the free stream Mach number
e We can categorize the flow based on Mach number:

— My, < 0.3 means the flow is incompressible

— My > 0.3 means the flow is incompressible

- 0.8 < My, <1 gives transonic flow



— My, > 5 gives hypersonic flow

Simplified Compressible Flows

o We will assume steady, 1D, isentropic (adiabatic and inviscid), and compressible flow

d dA dV
e pV A is constant, so we have e + 1 + v = 0 as an alternative form of the continuity equation

o Pressure work can be derived as p1 A1 V) — paAsVs

2
e Using RTT on energy balance, we get the compressible Bernoulli equation: b +e+ 5 + gz = const
p

where e is the total internal energy per unit mass
2
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— In terms of enthalpy h + 5 + gz = const

o For high-speed flows, potential energy of the fluid is negligible; if we imagine that we can adiabatically
2

slow the fluid to zero, then we get h + % = hyg, the stagnation enthalpy or total enthalpy

— Kinetic energy converts to enthalpy
— All the kinetic energy goes to an increase in internal energy (temperature) and pressure energy
e We can find properties of the fluid at stagnation:
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— T is the static temperature, the regular temperature we know
2

= o is the dynamic temperature, the temperature rise in the stagnation process
c

— Tp is the stagnation or total temperature, the temperature we get when we bring the fluid to a
stop adiabatically
— For a very high speed flow we have Ty > T and kinetic energy is important, but for low speed
flows we have Ty = T since kinetic energy is negligible
o We can get properties such as the stagnation temperature in terms of the mach number (formula in
notes)
— At very high velocities, the stagnation temperature can be significantly higher than the free stream
temperature
— Shockwaves will dissipate some of this temperature
e The rule of thumb is we must take compressibility into account when the density changes are greater
than 5%
— If we use the formula of p—po from M, we get a mach number of about 0.3 as the critical threshold

Variation of Fluid Velocity With Flow Area

A dVv
o Using the continuity equation and conservation of energy we can derive 0= 77(1 — M?)
dA

— In subsonic flow, we get v < 0 — velocity decreases with increasing area

* We know this from the incompressible Bernoulli equation

dA

— In supersonic flow, v > 0 — velocity increases with increasing area

* Density rapidly decreases so the air fills the entire channel

d
— In sonic flow, Fia 0 which means dA =0
dA
* If we have area as a function of x, then we have — = 0, which means the point at which we

x
have sonic flow must be either a point of maximum or minimum area

dA
* Since v < 0 for subsonic flow, the only way we can get this is to have a converging-diverging

duct; then we get M = 1 at the minimum point of the duct (the throat)
* After the throat, the flow can accelerate to supersonic (this depends on the duct design and
the pressure after the duct)
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