
Lecture 35, Dec 2, 2022
Models of the Fluid

• To develop any governing equation, we start from physical principles (e.g. conservation of mass, energy),
use a suitable model of the fluid, and then derive mathematical equations

– We have seen the finite control volume and finite system, now we will see the infinitesimal control
volume and infinitesimal system

• We take an infinitesimally small control volume and system moving with the flow, such that all properties
in this volume are constant

Substantial Derivative
• Consider an infinitesimally small fluid element, at point 1 at t = t1 and travelling to point 2 at t = t2
• Let V⃗ = uî + vĵ + wk̂ be the velocity field, where u, v, w are functions of (x, y, z, t)

– Let ρ = ρ(x, y, z, t) be the density
• Initially the fluid particle has ρ1 = ρ(x1, y1, z1, t1) and velocity V⃗1; at time t = t2 the particle has

ρ2 = ρ(x2, y2, z2, t2) and V⃗2

• Taylor expand density around point 1: ρ2 = ρ1+ ∂ρ

∂x
(x2−x1)+ ∂ρ

∂y
(y2−y1)+ ∂ρ

∂z
(z2−z1)+ ∂ρ

∂t
(t2−t1)+· · ·

– ρ2 − ρ1

t2 − t1
= ∂ρ

∂x

x2 − x1

t2 − t1
+ ∂ρ

∂y

y2 − y1

t2 − t1
+ ∂ρ

∂z

z2 − z1

t2 − t1
+ ∂ρ

∂t

– If we take lim
t2→t1

, we get Dρ

Dt
= u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+ ∂ρ

∂t

* The notation Dρ

Dt
indicates that we’re following the same system

* This is called a substantial derivative
• The substantial derivative D

Dt
is Lagrangian, while the right hand side with all the partial derivatives is

Eulerian

Definition

The substantial derivative operator is defined as

D
Dt

= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
= ∂

∂t
+ V⃗ · ∇⃗

where V⃗ · ∇⃗ is the convective derivative

• The substantial derivative is made of the local derivative, time rate of change at a fixed point due
to unsteady fluctuations, and the convective derivative u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
, which is the time rate of

change as a result of the movement of fluid
• The substantial derivative is a total derivative with respect to time

Divergence of Velocity

• ∇⃗ · V⃗ = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
can be interpreted as the time rate of change of the volume of an infinitesimal

moving system per unit volume
• As the system is moving, its volume is continuously changing
• ∇⃗ · V⃗ = 1

δΩ
D(δΩ)

Dt
• Note that if we have an incompressible flow, constant density means δΩsys must be constant, so

D(δΩ)
Dt

= 0, this means ∇⃗ · V⃗ = 0
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General Continuity Equation
• We’re starting with mass conservation, move through the 4 different models to get the continuity

equation
• Recall for the finite control volume we have d

dt

�
Ω

ρ dΩ +
�

S

ρV⃗ · dS⃗ = 0 which we derived from RTT

• For the finite system, we follow the system and take Dmsys

Dt
, which by mass conservation should be 0,

which gives us D
Dt

�
Ω

ρ dΩ = 0
• For the infinitesimal control volume:

– Along a side we have the flow rate as
(

ρu + ∂(ρu)
∂x

dx

)
dy dz

– The net mass flow rate out of the control volume is
(

∂(ρu)
∂x

+ ∂(ρu)
∂y

+ ∂(ρw)
∂z

)
dx dy dz

– This is equal to − ∂

∂t
dx dy dz due to conservation of mass

– Combined this gives us ∂ρ

∂t
+ ∇⃗ · (ρV⃗ ) = 0

• Now consider the infinitesimal system:
– D(δm)

Dt
= 0 where δm = ρδΩ

– D(δm)
Dt

= D
Dt

(ρδΩ) = ρ
D
Dt

(∆Ω) + δΩDρ

Dt
= 0

– Dρ

Dt
+ ρ

(
1

δΩ
D(∆Ω)

Dt

)
= 0

– This gives us Dρ

Dt
+ ρ∇⃗ · V⃗ = 0

• This gave us 4 general forms of the continuity equation:
1. d

dt

�
Ω

ρ dΩ +
�

S

ρV⃗ · dS⃗ = 0

2. D
Dt

�
Ω

ρ dΩ = 0

3. ∂ρ

∂t
+ ∇⃗ · (ρV⃗ ) = 0

4. Dρ

Dt
+ ρ∇⃗ · V⃗ = 0

• For a steady flow, ∂

∂t
= 0 but D

Dt
̸= 0, so we have:

1.
�

S

ρV⃗ · dS⃗ = 0

2. D
Dt

�
Ω

ρ dΩ = 0

3. ∇⃗ · (ρV⃗ ) = 0
4. Dρ

Dt
+ ρ∇⃗ · V⃗ = 0

• For an compressible flow, ρ is constant and so:
1.
�

S

ρV⃗ · dS⃗ = 0

2. D
Dt

Ω = 0

3. ∇⃗ · V⃗ = 0
– Note 3 and 4 became the same

• All these forms are mathematically equivalent
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