Lecture 35, Dec 2, 2022
Models of the Fluid

o To develop any governing equation, we start from physical principles (e.g. conservation of mass, energy),
use a suitable model of the fluid, and then derive mathematical equations
— We have seen the finite control volume and finite system, now we will see the infinitesimal control
volume and infinitesimal system
o We take an infinitesimally small control volume and system moving with the flow, such that all properties
in this volume are constant

Substantial Derivative

» Consider an 1nﬁn1tes1mally small fluid element, at point 1 at ¢ = ¢; and travelling to point 2 at ¢t = to
e Let V = ui + vj + wk be the velocity field, where u, v, w are functions of (z,y, 2, t)
— Let p = p(z, vy, 2,t) be the density
o Initially the fluid particle has p; = p(z1, 91, 21,t1) and velocity Vi; at time ¢t = ¢o the particle has
p2 = p(x2,Y2, 22, t2) and Va

o Taylor expand density around point 1: py = p1—|—%(xg—xl)—}—g—z(yg—yl)—f—%(zy—zl)—l—%(m—tl)—k -
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* The notation —~ indicates that we’re following the same system

* This is called a substantial derivative
e The substantial derivative Di is Lagrangian, while the right hand side with all the partial derivatives is

Eulerian
The substantial derivative operator is defined as
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where V - V is the convective derivative

o The substantial derivative is made of the local derivative, time rate of change at a fixed point due
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to unsteady fluctuations, and the convective derivative ua— + v— + w——, which is the time rate of
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change as a result of the movement of fluid
e The substantial derivative is a total derivative with respect to time

Divergence of Velocity
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e V-V="o4"— 4= canbe interpreted as the time rate of change of the volume of an infinitesimal
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moving system per unit volume
e As the system is moving, its volume is continuously changing
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» Note that if we have an incompressible flow, constant density means §€)s,s must be constant, so
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General Continuity Equation

e« We're starting with mass conservation, move through the 4 different models to get the continuity
equation
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Recall for the finite control volume we have P /// pdQ + # pV - dS = 0 which we derived from RTT
Q s
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For the finite system, we follow the system and take

D
which gives us Di ///Q pdQ2 =0

For the infinitesimal control volume:

, which by mass conservation should be 0,

— Along a side we have the flow rate as <pu + 3(apu) dm) dydz
x
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— This is equal to 5% dz dy dz due to conservation of mass

— The net mass flow rate out of the control volume is < ) drdydz
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— Combined this gives us a—i +V-(pV)=0
Now consider the infinitesimal system:
D(&
(9m) = 0 where dm = pdéQ2
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— This gives us D—§+pV-V:O

This gave us 4 general forms of the continuity equation:
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e For a steady ﬂow,azobutD—t;AO, so we have:
pV dS=0
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e For an compressible flow, p is constant and so:
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3.V-V=0
— Note 3 and 4 became the same

o All these forms are mathematically equivalent
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