Lecture 32/33, Nov 25, 2022

Bernoulli’s Equation

o Under the assumption of incompressible flow (constant p) we can integrate Euler’s equation and obtain

Bernoulli’s equation
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e Bernoulli’s equation is an energy conservation equation; all terms have units of energy per unit mass
2
— — is kinetic energy per unit mass
— gz is potential energy per unit mass

p . .
— — 1S pressure energy per unit mass

For steady, inviscid flow along a streamline, Euler’s equation is given by
1
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If the flow is also incompressible, then Bernoulli’s equation applies:
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o Note that Euler’s/Bernoulli’s equation only works along a streamline!
o Additionally since they rely on energy conservation, between the two points there must be no heat loss

and no shaft work )
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e If we apply the same analysis normal to the streamline we get il + 3 dn+gdz=0

d
— For a straight streamline R — oo and we just have il +9gdz=0

— If the flow is incompressible we can integrate this and get p; — p2 = pg(2z2 — 21), which is the
hydrostatic equation, but this time for a straight, incompressible flow

Static, Dynamic, Total and Stagnation Pressures

V2
e Multiplying the Bernoulli equation by p we get p + p? + pgz = Pr
— p is the static pressure, the pressure in the flow that does not incorporate any dynamic effects
2
- ,07 is the dynamic pressure, the pressure rise when the fluid is stopped isentropically

— pgz is the hydrostatic pressure (but not exactly, since it depends on the reference level for z)

Pr is the total pressure
2

- p+ p7 is the stagnation pressure, the pressure observed when the fluid is brought to a stop

(includes both the static and dynamic pressures)

o Static and stagnation pressures can be measured through a piezometer tube and a pitot tube, from
which the flow velocity can be calculated

Reynolds Transport Theorem

e Two approaches of examining the flow:
— Control volume approach (Eulerian): consider a region fixed in space, which fluid can flow in or
out of
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Figure 1: Measurement of static and dynamic pressures

— System approach (Lagrangian): consider a fixed collection of fluid particles, which moves with the
flow
o Equations used in solid analysis (e.g. Newton’s laws) apply to systems, but for fluids it’s easier to use
control volumes; Reynolds Transport Theorem links the two approaches
e Let B be some mass dependent property and B = mb where b is that property per unit mass
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Reynolds Transport Theorem:
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where dA = 7idA and S is the boundary of the control volume

dBsys  dBey | -
o In the simplified case of single-inlet, single-outlet, 1D flow along a streamtube, dty =1 + Bout —
: dBey | . .
Bin = dt + moutbout - mznbzn
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e Using this we can derive the most general form of the continuity equation as X /// pdV+ # pV-dA =0
% s

o Note the selection of control volume can make a problem easier; e.g. in the case of a body moving
through a fluid, it’s often best to have the control volume move with the body, so flow inside the control
volume is steady
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