Lecture 3, Sep 9, 2022

Formal Definition of the Double Integral

Rectangular Regions

Definition

Let z = f(x, y) be defined on $R = \{ (x, y) \mid a \le x \le b, c \le y \le d \}$, then the double integral of f over R is

$$\iint_{R} f(x, y) \, \mathrm{d}A = \iint_{R} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \lim_{\|P\| \to 0} \sum_{i=1}^{N} f(x_{i}^{*}, y_{i}^{*}) \Delta A_{i}$$

where:

- The region R is divided into N rectangular regions, with region i having dimensions Δx_i by Δy_i , and area $\Delta A_i = \Delta x_i \Delta y_i$
- (x_i^*, y_i^*) is a point in region *i*
- Δd_i is the length of the diagonal of region i
- The norm of the partition $||P|| = \max(\Delta d_i)$ for $i = 1, 2, \dots, N$
- $\sum_{i=1}^{N} m_i \Delta x_i \Delta y_i \leq \sum_{i=1}^{N} f(x_i^*, y_i^*) \Delta x_i \Delta y_i \leq \sum_{i=1}^{N} M_i \Delta x_i \Delta y_i$ where m_i/M_i is the minimum/maximum value of f over region i
 - - Convergence is guaranteed by $m_i \to M_i$ as $||P|| \to 0$, which is guaranteed by the continuity of f over R
- If f is continuous over R, this limit always exists and is the same for any way of dividing and sampling R, and f is said to be integrable over R

Definition

Double sum definition:

$$\iint_{R} f(x,y) \, \mathrm{d}A = \iint_{R} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \lim_{\|P\| \to 0} \sum_{j=1}^{m} \sum_{i=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A_{i}$$

where:

- The region R is divided into an n by m grid of rectangular regions, with region ij being Δx_i by Δy_j , with an area of $\Delta A_{ij} = \Delta x_i \Delta y_j$
- (x_{ij}^*, y_{ij}^*) is a point in region ij
- Δd_{ij} is the length of the diagonal of region ij

• The norm of the partition
$$||P|| = \max(\Delta d_{ij})$$
 for $\begin{cases} i = 1, 2, \cdots, n \\ j = 1, 2, \cdots, m \end{cases}$

Non-Rectangular Regions

