
Lecture 29, Nov 18, 2022
Boat and Stone Problem

• If you’re on a boat with a stone and throw the stone into the water, what happens to the water level?
• When the stone is on the boat, some portion of the buoyant force goes to lift the stone
• The displaced water volume by the stone on the boat is larger than the volume of the stone itself in

order to generate the necessary buoyant force, since the stone is denser than the water
• When the stone is thrown into the water, it sinks and displaces its volume to the water; however the

boat rises up by an amount that is more than the volume of the stone
• Therefore throwing the stone into the lake decreases the lake level

Stability of Immersed and Floating Bodies
• For immersed or floating bodies, there are two forces, F⃗B which acts through the centroid of the

displaced volume and W⃗ which acts through the center of gravity of the object
• For a completely submerged body, if the body is bottom-heavy then it is stable; if it’s top-heavy then

it’s unstable
– e.g. in a hot air balloon or a submarine the mass is concentrated at the bottom so they are stable

• For floating bodies, stability depends on the shape since the centroid of the submerged region changes
as the body rotates

– A wide body is stable while a narrow body is not

Hydrostatics Equation Derivation From Integrals
• Consider a fluid volume V with arbitrary shape, with gravity g⃗ not necessarily aligned with the axes
• The only assumption is we’re dealing with hydrostatic so no shear is involved
• Consider a differential volume element dV with mass dm = ρdV

– The body forces are δF⃗body = ρg⃗ dV =⇒
∑

F⃗body =
�

V

ρg⃗ dV

– The surfaces forces are δF⃗surface = −pn⃗ dS =⇒
∑

F⃗surface = −
�

s

pn⃗ dS

– Therefore
�

V

ρg⃗ dV −
�

s

pn⃗ dS = ma⃗ =
�

ρa⃗ dV

– Using the gradient theorem
�

S

pn⃗ dS =
�

V

∇⃗p dV

*
�

S

fn⃗ dS =
�

V

∇⃗f dV where f is a scalar and ∇⃗f is the gradient of f

* The gradient theorem is the analogue of the divergence theorem
– We can now combine the integrals as

�
V

(ρg⃗ − ∇⃗p) dV =
�

V

ρa⃗ dV

– Since the region is arbitrary we can shrink it arbitrarily; therefore the integrands have to be equal
– Therefore ρg⃗ − ∇⃗p = ρa⃗, which is the hydrostatic equation

Fluids in Linear Rigid-Body Motion
• Consider a container partially filled with incompressible liquid moving in a straight path with a⃗ = const
• What is the shape of the free surface zs(y)?

• From the hydrostatic equation −
(

∂p

∂x
î + ∂p

∂y
ĵ + ∂p

∂z
k̂

)
− ρgk⃗ = ρ(axî + ay ĵ + az k̂)

– If the acceleration is in the y and z directions we get dp = ∂p

∂y
dy + ∂p

∂z
dz = −ρay dy − ρ(g + az) dz

– This gives p(y, z) = −ρayy − ρ(g + az)z + C
• Boundary condition: At z = zs, p = patm

– patm = −ρayy − ρ(g + az)zs + C

1



– zs = C − patm

ρ(g + az) − ay

(g + az)y

– Let C1 = C − patm

ρ(g + az) then zs = C1 − ay

(g + az)y

• The surface of the liquid turns out to be linear, with a slope of − ay

g + az
• At rest the surface should be flat and have the same volume, we can use this to find C1

–
� L

0
wzs dy = HwL =⇒ C1L − ay

g + az

L2

2 = HL =⇒ C1 = H + ay

2(g + az)L

– Therefore zs(y) = H + ay

g + az

(
L

2 − y

)
• Alternatively notice along a line of constant pressure dp = 0, if we put this into dp = −ρay dy−ρ(g+az) dz

we get dz

dy
= − ay

g + az
, since the surface of the fluid is a line of constant pressure

• Notice if ay = 0 the slope is still 0, so the fluid surface stays flat

– In this case ∂p

∂x
= ∂p

∂y
= 0 but ∂p

∂z
= −ρ(g + az) ̸= 0

– If we are e.g. in an elevator, we can integrate ∂p

∂z
and notice a larger pressure gradient in the z

direction
• Also note for a fluid in free fall az = −g so p is constant throughout the fluid

Summary

The free surface for a fluid undergoing linear rigid-body motion is a flat planar surface given by

zs(y) = H + ay

g + az

(
L

2 − y

)
with pressure given by

p(y, z) = −ρayy − ρ(g + az)z + C
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