Lecture 24, Oct 28, 2022

Pressure Variations in a Fluid at Rest

•
$$\vec{a} = 0 \implies \vec{\nabla}p = -\rho g \vec{k} \implies \left(\frac{\partial p}{\partial x}\hat{i} + \frac{\partial p}{\partial y}\hat{j} + \frac{\partial p}{\partial z}\hat{k}\right) = -\rho g \vec{k}$$

- This means
$$\begin{cases} \frac{\partial p}{\partial x} = 0\\ \frac{\partial p}{\partial y} = 0\\ \frac{\partial p}{\partial z} = -\rho g\end{cases}$$

- This means in a fluid at rest p = p(z)
 - Pressure is constant along the x and y directions
 - Note the minus sign; as z decreases the pressure goes up

• We can now integrate this:
$$\Delta p = \int_{z_1}^{z_2} \rho g \, dz = g \int_{z_1}^{z_2} \rho \, dz$$

- Case 1: incompressible fluid, ρ constant
 - * $\Delta p = -\rho g(z_2 z_1)$
 - * We can write this as $p_2 = p_1 \rho gh$ or $p_1 = p_2 + \rho gh$ where $h = z_2 z_1$
 - Note if we're moving down in the fluid, h<0
 - * In this case pressure varies linearly with \boldsymbol{z}
- Case 2: compressible fluid, $\rho = \rho(z)$
 - * Define the *specific weight* γ as the weight per unit volume

*
$$\gamma = \frac{W}{W} = \frac{mg}{W} = \frac{\rho V g}{W} = \rho g$$

- * Therefore the change in pressure is found by integrating the specific weight
- * Note $\rho_{\text{gas}} \ll \rho_{\text{liquid}}$ so by extension, $\left|\frac{\partial p}{\partial z_{\text{gas}}}\right| \ll \left|\frac{\partial p}{\partial z_{\text{liquid}}}\right|$ • Pressure changes are much smaller in a gas
- * For small distances (e.g. within a tube or a building) in a gas, we can assume pressure to be constant

Summary

For a fluid with no shear force:

If gravity is $\vec{g} = -g\hat{k}$:

$$\Delta p = \int_{z_1}^{z_2} \rho g \, \mathrm{d}z = g \int_{z_1}^{z_2} \rho \, \mathrm{d}z$$

 $-\vec{\nabla}p + \rho\vec{g} = \rho\vec{a}$

 $-\vec{\nabla}p - \rho g\vec{k} = \rho \vec{a}$

If the fluid is also incompressible:

$$p_2 = p_1 - \rho g h$$

• Example: find the pressure elevation relationship for a perfect ideal gas

$$-p = \rho RT$$

$$-\frac{\partial p}{\partial z} = -\rho g \implies \frac{\partial p}{\partial z} = -\frac{p}{RT}g$$

$$-\int_{p_1}^{p_2} \frac{1}{p} dp = -\int_{z_1}^{z_2} \frac{g}{RT} dz \implies \ln \frac{p_2}{p_1} = -\frac{g}{RT}\Delta z$$

$$-p_2 = p_1 e^{-\frac{g}{RT}(z_2 - z_1)}$$