Lecture 22, Oct 27, 2022

Forces on a Fluid

- Two categories:
 - Body forces: developed without physical contact, proportional to the fluid's mass * e.g. gravity
 - Surface forces: developed with physical contact at the surface of a fluid element
 - * These don't have to be real surfaces
 - * Can be broken down into components tangential (shear) or normal to the surface
 - * Surface forces result in stresses

Definition		
Normal stress is defined as	$\sigma = \lim_{\delta A \to 0} \frac{\delta F_n}{A}$	
Shear stress is defined as	$\tau = \lim_{\delta A \to 0} \frac{\delta F_t}{\delta A}$	

- Stress: Force per unit area
 - Stress at a point is defined as the limit as the area decreases to 0
 - Normal stress is defined as $\sigma = \lim_{\delta A \to 0} \frac{\delta F_n}{A}$

 - Shear stress is defined as $\tau = \lim_{\delta A \to 0} \frac{\delta T_t}{\delta A}$ Since there are multiple surfaces that can pass through a point, the stress at a point is described completely by specifying 3 stresses on mutually perpendicular planes through the point
- Double subscript notation for stress: τ_{xy} is a stress on the x plane (unit vector in the x direction) acting in the y direction
 - One normal stress σ_{xx} , two tangential stresses τ_{xy}, τ_{xz} , for every surface (in this case x)
 - This means there are 9 such stresses for every point! From these we can form a stress tensor to describe all stress components:

- Stress tensor: $\begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{bmatrix}$

(Dynamic) Viscosity

- Recall shear stress in a solid is proportional to deformation angle $\delta \alpha$
- Since a fluid never stops deforming, shear stress is instead proportional to the rate of change in the • deformation angle

 $-\tau \propto \frac{\mathrm{d}\alpha}{\mathrm{d}t}$

• In a parallel flow field with a velocity gradient (e.g. a boundary layer), the fluid undergoes shear forces as it deforms due to difference in velocity between layers

$$- d\alpha = \frac{\mathrm{d}u}{\mathrm{d}y} \,\mathrm{d}t \implies \frac{\mathrm{d}\alpha}{\mathrm{d}t} = \frac{\mathrm{d}\alpha}{\mathrm{d}t}$$

- $d\alpha = \frac{1}{dy} dt \implies \frac{1}{dt} = \frac{1}{dy}$ The rate of angular deformation of the fluid region is equal to the velocity gradient of the field Since $\tau \propto \frac{d\alpha}{dt} = \frac{du}{dy}$ for Newtonian fluids we can let $\tau = \mu \frac{d\alpha}{dt} = \mu \frac{du}{dy}$, where the proportionality constant μ is the viscosity

Definition

The viscosity of a Newtonian fluid is μ defined such that

$$r = \mu \frac{\mathrm{d}\alpha}{\mathrm{d}t} = \mu \frac{\mathrm{d}u}{\mathrm{d}y}$$

τ

where $\frac{\mathrm{d}\alpha}{\mathrm{d}t}$ is the rate of angular deformation of the fluid element, equal to $\frac{\mathrm{d}u}{\mathrm{d}y}$, the velocity gradient in the fluid

- Newtonian fluids' viscosity are independent of the rate of deformation
 - On a graph of shear stress vs. velocity gradient, a Newtonian fluid starts at the origin and has constant slope
 - For non-Newtonian fluids, this graph is nonlinear and μ can vary with rate of deformation; some may even not start at the origin
 - * Shear thinning: with higher rates of deformation, viscosity decreases (e.g. some paints, blood, cookie dough)
 - * Shear thickening: with higher rates of deformation, viscosity increases (e.g. cornstarch + water)
 - * Bingham plastic: acts like a solid until a certain shear stress, until a certain threshold after which it acts like a fluid (e.g. toothpaste)
 - Graph starts above zero
 - The local viscosity/apparent viscosity μ_{ap} is μ at the local conditions
- Viscosity has a strong dependence of temperature:
 - For liquids, viscosity *decreases* with temperature
 - * Viscosity is caused by intermolecular forces; at higher temperatures molecules overcome these forces
 - For gases, viscosity *increases* with temperature
 - * Viscosity is caused by molecular collisions; at higher temperatures molecules collide more
- "Viscosity" commonly refers to dynamic viscosity as opposed to kinematic viscosity

Definition

The kinematic viscosity $v = \frac{\mu}{\rho}$, where μ is the dynamic viscosity and ρ is the density

Compressibility

Definition

The bulk modulus is defined as
$$E_V = -\frac{1}{V} \frac{\mathrm{d}P}{\mathrm{d}V}$$
 where V is the volume

• Bulk modulus measures compressibility; the larger it is, the less compressible the fluid

- Note an increase in P causes a decrease in Ψ , which is why there is a negative sign - Alternatively can be expressed as $E_V = \frac{1}{\rho} \frac{\mathrm{d}P}{\mathrm{d}\rho}$ (note there is no minus sign)

*
$$m = \rho V \implies \mathrm{d}m = \rho \mathrm{d}V + V \mathrm{d}\rho = 0 \implies \frac{\mathrm{d}\rho}{\rho} = -\frac{\mathrm{d}V}{V}$$

- A truly incompressible flow has $E_V \to \infty$
 - * For water it is 2.2×10^9 Pa, so it can be approximated as incompressible
 - * Even though air is a lot more compressible, we can still assume it to be incompressible in a low speed flow