Lecture 20, Oct 21, 2022

Divergence

Let F = ﬁ(m,y, z) = P(x,y,2)i + Q(x,y, 2)] + R(z,y, 2)k be a differentiable vector field, then the
divergence of F' is
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* The divergence is a scalar field
e V-Fis ‘a measure of the local “outgoingness” of the vector field at each point
~IfV-F< 0, the point is a sink — vectors around it go towards it
*If Fisa velocity field, with time particles accumulate at this point, increasing the density
with time
~IfV-F > 0, then point is a source — vectors around it move away from i
* Likewise particles move away from it and decrease the density with time
~IfV.-F= 0, the density of the fluid around that point does not change
* In an incompressible fluid, this is one of the governing equations

Curl

Let F = ﬁ(x,y, z) = P(x,vy, 2)1 + Q(w,y,z)j’ + R(z,v, z)lAc be a differentiable vector field, then the

curl of F is
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o Unlike divergence, curl is a vector field
e The curl vector is associated with the local rotation of the vector field
— The direction of the vector is the axis of rotation, the magnitude of the vector is the velocity of
rotation
e VxV where Visa velocity field is the vorticity

Properties of Divergence and Curl

o Let f = f(z,y, 2) be a scalar function and F= ﬁ(az, y,z) = P(z,y, 2)i + Q(z,y, 2)) + R(z,y, z)l% be a
vector field, both with continuous first partials, then:
1. VX (Vf) =0 (curl of a gradlent is zero)
2. If F is conservative, then VxF=0
— This essentially comes from the first property; if F is conservative then it’s a gradient of some
scalar function, and we know the curl of a gradient is zero
3. V- (V x F) =0, (divergence of curl is zero)
S =2 32f *f  Pf .
e div(V-f) =V -Vf=Vf= 5+ a5 042 + 92 is known as the Laplace operator



Stokes’ Theorem

e Stokes’ theorem is the 3D extension of Green’s theorem
— Green’s theorem connects the line integral around a closed planar curve C' and the region R inside
— Stokes’ theorem does this in 3 dimensions, where the curve and its enclosed region is not necessarily
planar
* Think about a bubble surface made by a wire loop

Let S be an orientable, piecewise smooth surface that is bound by a simple, closed, piecewise smooth
and positively oriented boundary curve C; if F' is a vector field with continuous first partials over S,

then
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e Stokes’ theorem relates the line integral around the boundary of a surface to the surface integral of the
curl over that surface
e The orientations of 7 and C' must match the right-hand rule: curl your fingers in the direction of C,
and the direction your thumb is pointing is the direction of positive 7
— If you walk along the curve with your head in the direction of 77, if the surface is on your left, then
the orientations match
e Green’s theorem can be derived from Stokes’ theorem:
— For a surface S in the z-y plane with boundary curve C, its normal vector will be 7 = k

— Therefore 55 F.di = //(ﬁ x F)-kdS
c
— This works out to be equivalent to Green’s theorem

e Note the surface of a boundary curve is not unique; we can stretch the surface however we want, as
long as the boundary curve stays the same, the surface integral of the curl stays the same

Divergence Theorem

Let E be a solid region bounded by the closed, positively (outward) oriented surface S; let F be a
vector field with continuous first partials in F, then
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e The flux across the boundary of a solid region is equal to the divergence inside the region




	Lecture 20, Oct 21, 2022
	Divergence
	Curl
	Properties of Divergence and Curl
	Stokes’ Theorem
	Divergence Theorem


