
Lecture 20, Oct 21, 2022
Divergence

Definition

Let F⃗ = F⃗ (x, y, z) = P (x, y, z)̂i + Q(x, y, z)ĵ + R(x, y, z)k̂ be a differentiable vector field, then the
divergence of F⃗ is
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• The divergence is a scalar field
• ∇⃗ · F⃗ is a measure of the local “outgoingness” of the vector field at each point

– If ∇⃗ · F⃗ < 0, the point is a sink – vectors around it go towards it
* If F⃗ is a velocity field, with time particles accumulate at this point, increasing the density

with time
– If ∇⃗ · F⃗ > 0, then point is a source – vectors around it move away from i

* Likewise particles move away from it and decrease the density with time
– If ∇⃗ · F⃗ = 0, the density of the fluid around that point does not change

* In an incompressible fluid, this is one of the governing equations

Curl
Definition

Let F⃗ = F⃗ (x, y, z) = P (x, y, z)̂i + Q(x, y, z)ĵ + R(x, y, z)k̂ be a differentiable vector field, then the
curl of F⃗ is

curl F⃗ = ∇⃗ × F⃗ =
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• Unlike divergence, curl is a vector field
• The curl vector is associated with the local rotation of the vector field

– The direction of the vector is the axis of rotation, the magnitude of the vector is the velocity of
rotation

• ∇⃗ × V⃗ where V⃗ is a velocity field is the vorticity

Properties of Divergence and Curl
• Let f = f(x, y, z) be a scalar function and F⃗ = F⃗ (x, y, z) = P (x, y, z)̂i + Q(x, y, z)ĵ + R(x, y, z)k̂ be a

vector field, both with continuous first partials, then:
1. ∇⃗ × (∇⃗f) = 0⃗ (curl of a gradient is zero)
2. If F⃗ is conservative, then ∇⃗ × F⃗ = 0

– This essentially comes from the first property; if F⃗ is conservative then it’s a gradient of some
scalar function, and we know the curl of a gradient is zero

3. ∇⃗ · (∇⃗ × F⃗ ) = 0, (divergence of curl is zero)

• div(∇⃗ · f) = ∇⃗ · ∇⃗f = ∇⃗2f = ∂2f

∂x2 + ∂2f

∂y2 + ∂2f

∂z2 is known as the Laplace operator
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Stokes’ Theorem
• Stokes’ theorem is the 3D extension of Green’s theorem

– Green’s theorem connects the line integral around a closed planar curve C and the region R inside
– Stokes’ theorem does this in 3 dimensions, where the curve and its enclosed region is not necessarily

planar
* Think about a bubble surface made by a wire loop

Theorem

Let S be an orientable, piecewise smooth surface that is bound by a simple, closed, piecewise smooth
and positively oriented boundary curve C; if F⃗ is a vector field with continuous first partials over S,
then �

C

F⃗ · dr⃗ =
�

S

(∇⃗ × F⃗ ) · n⃗ dS

• Stokes’ theorem relates the line integral around the boundary of a surface to the surface integral of the
curl over that surface

• The orientations of n⃗ and C must match the right-hand rule: curl your fingers in the direction of C,
and the direction your thumb is pointing is the direction of positive n⃗

– If you walk along the curve with your head in the direction of n⃗, if the surface is on your left, then
the orientations match

• Green’s theorem can be derived from Stokes’ theorem:
– For a surface S in the x-y plane with boundary curve C, its normal vector will be n⃗ = k⃗

– Therefore
�

C

F⃗ · dr⃗ =
�

S

(∇⃗ × F⃗ ) · k⃗ dS

– This works out to be equivalent to Green’s theorem
• Note the surface of a boundary curve is not unique; we can stretch the surface however we want, as

long as the boundary curve stays the same, the surface integral of the curl stays the same

Divergence Theorem

Theorem

Let E be a solid region bounded by the closed, positively (outward) oriented surface S; let F⃗ be a
vector field with continuous first partials in E, then

�
S

F⃗ · n⃗ dS =
�

E

(∇⃗ · F⃗ ) dV

• The flux across the boundary of a solid region is equal to the divergence inside the region
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