Lecture 17, Oct 14, 2022

Green’s Theorem

e Green’s theorem connects a line integral over a closed curve C' to a double integral over the region R it
encloses

e Simple curve: a curve that does not intersect itself except at the endpoints

e Curves can have orientation; a positive oriented curve has the inside of the curve to the left as you go
around it (think unit circle)

For a positively oriented, piecewise smooth, simple closed curve C' in 2D bounding the region R, if
P(z,y),Q(x,y) and their first partials are continuous over R, then
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Green’s Theorem: Proof of Special Case
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— (1} is the bottom path y = y1 (), C is the top path y = ya(x)
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— Cj5 is the left path x = z1(y), Cy is the right path = x4 (y)

e If we combine the two, we get: %ny Ydz + Q(x,y) dy—// (8__¥> dA
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