
Lecture 11, Sep 30, 2022
Change of Variables in Multiple Integrals
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– This transformation from x to a function of u is one-to-one
• Before we can do this for multiple integrals, what does dx = 1

2
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du mean?

– We converted f(x) to f(u), so that the corresponding points in each have the same value of f
– This alone doesn’t make the integrals equal because ∆x ̸= ∆u since ∆u is stretched or compressed
– For small ∆u w have ∆x
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can be viewed as the scaling factor between the two areas

• Consider
�

R

f(x, y) dA, change variables x = g(u, v), y = h(u, v) assuming g, h have continuous first
partials and a 1-to-1 mapping

– The distortion on each ∆A can be calculated using the Jacobian, the determinant of the local first
derivative matrix
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Important

Under a change of variables x = g(u, v), y = h(u, v),
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where R is on the x-y plane, S is on the u-v plane, assuming:
1. f is continuous
2. g and h have continuous first partials
3. The transformation is 1-to-1
4. The Jacobian ∂(x, y)

∂(u, v) is nonzero

Note the absolute value around the Jacobian.

• To do the transformation, rewrite x and y in terms of u and v, replace dA with ∂(x, y)
∂(u, v) du dv, and

change the bounds of integration to reflect the new region
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