
Lecture 10, Sep 29, 2022
Taylor Series and Approximations for Two Variable Functions

• For f(x, y), define a parametric F (t) = f(x0 + t∆x, y0 + t∆y) where (x0, y0) is the point around which
to approximate

– F (0) = f(x0, y0)
– We want to find F (1) = f(x0 + ∆x, y0 + ∆y)

• By the chain rule F ′(t) = ∂f
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• This gives the approximations:
– The first order approximation is then f(x0 +∆x, y0 +∆y)+f(x0, y0)+fx(x0, y0)∆x+fy(x0, y0)∆y

(tangent plane approximation)
– The quadratic approximation is f(x0 + ∆x, y0 + ∆y) + f(x0, y0) + fx(x0, y0)∆x + fy(x0, y0)∆y +

1
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(
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• In general the nth order derivatives work like a binomial expansion

Definition

The Taylor series expansion of f(x0 + ∆x, y0 + ∆y) is
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Important

Third-degree Taylor series expansion of a two-variable function:

f(x0 + ∆x, y0 + ∆y) ≈ f(x0, y0)
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where all partials are evaluated at (x0, y0)

• The nth degree polynomial of f(x, y) is a polynomial in x − x0 and y − y0 with terms up to the nth
power

• Approximations become exact as
√

∆x2 + ∆y2 → 0
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