Lecture 10, Sep 29, 2022

Taylor Series and Approximations for Two Variable Functions

o For f(xz,y), define a parametric F(t) = f(xo + tAz, yo + tAy) where (29, yo) is the point around which
to approximate
= F(0) = f(zo, yo)
— We want to find F(1) = f(z¢ + Az, yo + Ay)
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e This gives the approx1mat10ns

— The first order approximation is then f(zo+ Az, yo+ Ay)+ f(x0, Yo) + f2(z0, Yo) Az + fy(x0, yo) Ay
(tangent plane approximation)

— The quadratic approximation is f(zo 4+ Az, yo + Ay) + f(20, yo0) + fz(z0,Y0) Az + fy (20, yo)Ay +

1
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o In general the nth order derivatives work like a binomial expansion

The Taylor series expansion of f(xo+ Az, yo + Ay) is

n 877‘
f(zo + Az, yo + Ay) = Z{%Z()W
0

n=0

A.’En_kAyk}

(z0,%0)

where

Important

Third-degree Taylor series expansion of a two-variable function:

f(xo+ Az, yo + Ay) = f(xo,y0)
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where all partials are evaluated at (zo, yo)

o The nth degree polynomial of f(x,y) is a polynomial in & — 2 and y — yo with terms up to the nth
power

o Approximations become exact as /Az2 + Ay? — 0
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