
Lecture 31, Dec 6, 2021
Simple Harmonic Oscillator Energy

• Recall a(t) = −Aω2 cos(ωt + ϕ) =⇒ Fx = −mAω2 cos(ωt + ϕ) = −mω2x(t)

• We can integrate this force to find the work done: W =
� x

x0

−mω2x dx = 1
2mω2(x2

0 − x2)

• W = ∆K =⇒ ∆K = 1
2mω2(x2

0 − x2)

• If we make the oscillator a closed system then ∆U = −∆K = 1
2mω2(x2 − x2

0)

– Since potential at x0 is arbitrary we can set this to 0 so ∆U = 1
2mω2x2

• The total energy is then E = U+K = 1
2mω2x2+ 1

2mv2 = 1
2mω2A2 cos2(ωt+ϕ)+ 1

2mω2A2 sin2(ωt+ϕ) =
1
2mω2A2

– The energy of a simple harmonic oscillator is constant and it only trades potential and kinetic
energy back and forth

– The energy is proportional to the square of the amplitude

Torsional Oscillators
• A disk suspended by a twisting fibre creates a torsional oscillator in simple harmonic motion

– τ = Iα
– For small angular displacements τ = −κ(ω − ω0) where κ is the angular equivalent of k

– The differential equation is then d2θ

dt2 = −κ

I
θ which is the same as the one for translational simple

harmonic motion, just with the translational terms substituted by rotational ones
• The equations of motion are identical to translational simple harmonic motion θ = θmax cos(ωt + ϕ)

and ω =
√

κ

I

Examples of Oscillating Systems

• All simple harmonic oscillators obey dxt

d+x
ω2x = 0

• Examples:

1. Mass on a spring: m
d2x

dt2 + kx = 0 =⇒ ω2 = k

m

2. Torsional oscillator: I
d2θ

dt2 + κθ = 0 =⇒ ω2 = κ

I

3. Pendulum: ml2 d2θ

dt2 + mgl sin θ ≈ ml2 d2θ

dt2 + mglθ = 0 =⇒ ω2 = g

l

4. Floating object bobbing in water: m
d2y

dt2 + g(ρAy) = 0 =⇒ ω2 = gρA

m
– A buoyant object will float in the water at some neutral point, and if pushed past this neutral

point then Fy ∝ y

5. Capacitor-inductor circuit L
d2Q

dt2 + Q

C
= 0 =⇒ ω2 = 1

LC

– Voltage drop across capacitor: Q

C

– Voltage drop across inductor: L
d2Q

dt2

Damped Oscillations
• In reality there is always some friction present, causing the oscillator to lose energy and thus amplitude
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• The loss in amplitude is called damping
• Often the damping is caused by viscous friction, with the damping force opposing and proportional to

velocity F = −bv⃗

• Therefore Fx = −(kx + bvx) = max =⇒ m
d2x

dt2 + b
dx

dt
+ kx = 0

• The solution is given by x(t) = Ae− bt
2m cos(ωdt + ϕ) where ωd =

√
ω2 −

(
b

2m

)2
=

√
k

m
− b2

4m2

– A damped harmonic oscillator oscillates slower than the equivalent undamped oscillator
– Let the damping time constant γ = b

m
, with units of time

– The amplitude can be expressed as xmax = Ae
−γt
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– The energy remaining is then E(t) = 1
2mω2x2

max =
(

1
2ω2A2

)
e−γt

• As b increases the oscillator decays faster, and when b > 2mω the system is overdamped and there are
no oscillations at all

Q Factor
• Q is the quality factor of an oscillator and measures the rate of decay

– Differs from ω in the sense that Q measures the number of oscillations
• Q ≡ ω

γ
= 2π

γT
• If Q = 2π then the energy falls to e−1 = 37% of its original energy in a single cycle
• A good bell has Q = 100, electronic circuits have Q = 106, quantum systems an have Q = 109
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