Lecture 30, Dec 2, 2021

Approximation of Linear Restoring Forces

- Simple harmonic motion occurs whenever there is a linear restoring force
- Usually restoring forces can be approximated linearly even when they're not (for small displacements)
- This means that there is usually simple harmonic motion occurring whenever there is a point of stable equilibrium (forces attempt to restore the object to equilibrium instead of pushing it away or doing nothing when the object goes away from equilibrium)

• If
$$F_x = -kx$$
 then $U = -\int F_x \, dx = \frac{kx^2}{2} + U(0)$

- $k = \frac{d^2 U}{dx^2}$ is the curvature of the potential, and we can derive this approximate k even when the restoring force is not truly linear
- This can be done for any potential but the motion is only truly harmonic for k very close to equilibrium points
- A pendulum is such an example; the restoring torque is not truly linear but for small angles $\sin x\approx x$
 - Potential is parabolic around the minimum for true harmonic motion
 - Since the pendulum is constrained to circular motion, its potential (w.r.t. angle) is sinusoidal
 - In a simple pendulum there is negligible mass in the string, the pendulum has a force mg pointing straight down from gravity, acting on the mass
 - The radial component is $mg\cos\theta$ and the tangential component is $mg\sin\theta$
 - * The radial component is opposed by the tension in the string but the tangential component is not
 - * Sum of the forces in the radial direction is $mg\cos\theta T = ma_r$
 - * $a_r = -a_c = r\omega^2$ pointing in the $-\hat{r}$ direction towards the centre
 - * Since the pendulum doesn't move radially this means that $mg\cos\theta = T$
 - * Forces in the tangent direction is $mg\sin\theta$ without a counterbalancing force, so the tangential acceleration is $r\alpha = la_{\theta}$
 - * $-mg\sin\theta = ml\frac{d^2\theta}{dt^2} \implies \frac{d^2\theta}{dt^2} + \frac{mg}{ml}\sin\theta = 0$ is the equation of motion for the simple pendulum
 - This would be the same equation as simple harmonic motion if the $\sin\theta$ was instead θ
 - * Behaviour is non harmonic if $\sin \theta$ is not close to θ , when $\frac{\theta^3}{3!}$ is not negligible
 - Expanding this out the contribution is $\frac{\theta^3}{\frac{3!}{\theta}}$, so we want $\frac{\theta^2}{6} \ll 1$
 - In a physical pendulum in which the mass of the rod cannot be ignored, we can use I instead of m and now the gravitational force acts on the centre of mass of the entire rod-mass system
 - * The torque applied is $mgl\sin\theta$ where l is the distance of the centre of mass of the system from the pivot
 - * For the physical pendulum $\sum \tau = -mgl\sin\theta = I\alpha_{\theta} = \frac{d^2\theta}{dt^2} + \frac{mgl\sin\theta}{I} = 0$
 - If $I = ml^2$ then this would be the same as the simple pendulum equation
 - Compare to simple harmonic motion $\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \omega^2 x = 0$
 - Even for a spring, F = -kx is only an approximation
- For any arbitrary (differentiable) potential we can always approximate its behaviour at minima using parabolas, which lead to simple harmonic motion