Lecture 30, Dec 2, 2021

Approximation of Linear Restoring Forces

e Simple harmonic motion occurs whenever there is a linear restoring force

Usually restoring forces can be approximated linearly even when they’re not (for small displacements)
This means that there is usually simple harmonic motion occurring whenever there is a point of stable
equilibrium (forces attempt to restore the object to equilibrium instead of pushing it away or doing
nothing when the object goes away from equilibrium)
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—— is the curvature of the potential, and we can derive this approximate k even when the
x

restoring force is not truly linear

— This can be done for any potential but the motion is only truly harmonic for k& very close to
equilibrium points

A pendulum is such an example; the restoring torque is not truly linear but for small angles sinx ~ x

— Potential is parabolic around the minimum for true harmonic motion

— Since the pendulum is constrained to circular motion, its potential (w.r.t. angle) is sinusoidal

— In a simple pendulum there is negligible mass in the string, the pendulum has a force mg pointing
straight down from gravity, acting on the mass

— The radial component is mg cos @ and the tangential component is mg sin
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The radial component is opposed by the tension in the string but the tangential component is
not

Sum of the forces in the radial direction is mgcos@ — T = ma,

a, = —a. = rw? pointing in the —# direction towards the centre

Since the pendulum doesn’t move radially this means that mgcosf =T

Forces in the tangent direction is mgsin # without a counterbalancing force, so the tangential

acceleration is ra = lag
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—mgsing = ml-— — — + M9 Gn6 = 0 is the equation of motion for the simple
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pendulum

e This would be the same equation as simple harmonic motion if the sin § was instead 6

Behaviour is non harmonic if sin @ is not close to 8, when a1 is not negligible
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« Expanding this out the contribution is -, so we want — < 1

— In a physical pendulum in which the mass of the rod cannot be ignored, we can use I instead of m
and now the gravitational force acts on the centre of mass of the entire rod-mass system
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The torque applied is mglsin @ where [ is the distance of the centre of mass of the system

from the pivot

d?0  mglsind —0

dt? I

o If I = ml? then this would be the same as the simple pendulum equation
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For the physical pendulum Z T=—mglsind = Iag =

d*z
— Compare to simple harmonic motion — + w?z =0

de?

— Even for a spring, F = —kx is only an approximation
o For any arbitrary (differentiable) potential we can always approximate its behaviour at minima using
parabolas, which lead to simple harmonic motion
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