Lecture 3, Sep 15, 2021

Motion in 1D

The Calculus of Motion

- The calculus hierarchy: x(t) ^d/_{√ dt} v(t) ^d/_{√ dt} a(t)
 Integration only tells you how much the functions changed, not where they started
 Essential calculus: ^d/_{dt}tⁿ = ntⁿ⁻¹ ⇒ ∫ ntⁿ⁻¹ dt = tⁿ + C ⇒ ∫ tⁿ dt = ¹/_{n+1}tⁿ⁺¹
 Example: x(t) = 2[m] + 3 [m/s³] t³ (square brackets denote units)

$$-v(t) = \frac{d}{dt} (2+3t^3) = 0+9t^2$$

- Example: $v(t) = 3 \,[m/s]$ find x(t) for $x(0) = 2 \,[m]$ -x(0) is the constant of integration
- When differentiating by time, a unit of time is introduced in the denominator; e.g. $\frac{d}{dt}$ [m] = [m/s]

Units of Motion

Quantity	Symbol	Units
time	t	Т
position	$x \text{ or } \vec{r} \text{ in multiple dimensions}$	L
velocity	$v \text{ or } \vec{v} \text{ in multiple dimensions}$	L/T
acceleration	$a \text{ or } \vec{a} \text{ in multiple dimensions}$	L/T^2
speed	$ v $ or $\ \vec{v}\ $ in multiple dimensions	L/T