Lecture 24, Nov 15, 2021

Work in Multiple Dimensions

- In multiple dimensions power is generalized from P = Fv to $P = \vec{F} \cdot \vec{v}$
- Power is the rate of change of mechanical energy
- In one dimension $K = \frac{1}{2}mv^2 \implies \frac{\mathrm{d}K}{\mathrm{d}t} = \frac{1}{2}m\frac{\mathrm{d}}{\mathrm{d}t}v^2 = mv\frac{\mathrm{d}v}{\mathrm{d}t} = mva = Fv$
- In multiple dimensions $K = \frac{1}{2}m\|\vec{v}\|^2$ where $\|\vec{v}\|^2 = v_x^2 + v_y^2 + v_z^2$, so $\frac{\mathrm{d}K}{\mathrm{d}t} = \frac{1}{2}m\frac{\mathrm{d}}{\mathrm{d}t}\|\vec{v}\|^2 = \frac{1}{2}m(2v_xa_x + v_y^2)$ $2v_y a_y + 2v_z a_z) = F_x v_x + F_y v_y + F_z v_z = \vec{F} \cdot \vec{v}$
- Using the dot product $\vec{F} \cdot \vec{v} = F_x v_x + F_y v_y + F_z v_z = \left\| \vec{F} \right\| \| \vec{v} \| \cos \theta$, which computes the velocity of the point of application in the direction of the applied force
 - Example: The earth orbiting around the sun does no work, because the gravitational force pulling it inwards is perpendicular to the displacement of the Earth
- Generalizing this to work, $dW = P dt = \vec{F} \cdot \Delta d\vec{r}$ and taking the integral we obtain work as a line integral: $W = \int \vec{F} \cdot d\vec{r}$
 - To actually compute this integral we need to parameterize $\vec{r}(t)$, and turn $d\vec{r}$ into $\begin{vmatrix} dx \\ dy \\ dz \end{vmatrix}$, each of

which expressed in terms of
$$dt$$
, so the integral can now be computed
 $-\int \vec{F} \cdot d\vec{r} = \int \vec{F} \cdot \frac{d\vec{r}}{dt} dt$ and $\frac{d\vec{r}}{dt}$ is just the velocity

Force Created by Potential Energy

- Recall that systems always accelerate towards lower potential every
- Since dK = W dt = F dx, thus dU = -F dx and F = dU/dx
 So if we know the change in potential energy then we know the force
- In multiple dimensions $F_x = -\frac{\partial U}{\partial x}, F_y = -\frac{\partial U}{\partial y}$, etc
- If we write force as a vector then $\vec{F} = -\frac{\partial U}{\partial x}\hat{i} + -\frac{\partial U}{\partial y}\hat{j}$, which is the gradient of $U, \vec{F} = -\vec{\nabla}U$, thus force is the gradient of potential
 - e.g. gravitational potential $U(x,y) = mgy \implies \vec{F} = \begin{bmatrix} 0 \\ -mg \end{bmatrix}$, or a spring $U(x,y) = \frac{1}{2}kx^2 \implies$
 - $\vec{F} = \begin{bmatrix} -kx \\ 0 \end{bmatrix}$
- Forces derived from the gradient of a potential are *conservative*; U + K is always conserved
- With a conservative force the work done is independent of the path taken, by the fundamental theorem of calculus for line integrals